Question

Find an SVD of the indicated matrix. (Enter each matrix in the form [[row 1], [row 2], ...), where each row is a comma-separaPPlease be as clear as possible. Thanks

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Find Singular Value Decomposition (SVD) of a Matrix ...
[ 5

12 ]

Solution:

A=
5
12


A⋅A′

A⋅A′=
25 60
60 144



Find Eigen vector for A⋅A′

|A⋅A′-λI|=0

(25-λ) 60
60 (144-λ)
= 0



∴(25-λ)×(144-λ)-60×60=0

∴(3600-169λ+λ2)-3600=0

∴(λ2-169λ)=0

∴λ(λ-169)=0

∴λ=0or(λ-169)=0

∴ The eigenvalues of the matrix A⋅A′ are given by λ=0,169,

1. Eigenvectors for λ=169

v1=
0.4167
1


2. Eigenvectors for λ=0

v2=
-2.4
1



For Eigenvector-1 (0.4167,1), Length L = √0.41672+12=1.0833

So, normalizing gives u1=(0.41671.0833,11.0833)=(0.3846,0.9231)

For Eigenvector-2 (-2.4,1), Length L = √(-2.4)2+12=2.6

So, normalizing gives u2=(-2.42.6,12.6)=(-0.9231,0.3846)

A′⋅A

A′⋅A=
[ 169 ]



Find Eigen vector for A′⋅A

|A′⋅A-λI|=0

(169-λ)
= 0



∴(169-λ)=0

∴(-λ+169)=0

∴-(λ-169)=0

∴(λ-169)=0

∴ The eigenvalues of the matrix A′⋅A are given by λ=169,

1. Eigenvectors for λ=169

v1=
[ 1 ]



For Eigenvector-1 (1), Length L = √12=1

So, normalizing gives v1=(11)=(1)

Solution

∴Σ=
√169
0
=
13
0


∴U= [u1,u2] =
0.3846 -0.9231
0.9231 0.3846



V is found using formula vi=1σiAT⋅ui

∴V=
[ 1 ]

----------------------------------------===============================--------------------------------------------------------

Solution:

A=
[ 8 15 ]


A⋅A′

A⋅A′=
[ 289 ]



Find Eigen vector for A⋅A′

|A⋅A′-λI|=0

(289-λ)
= 0



∴(289-λ)=0

∴(-λ+289)=0

∴-(λ-289)=0

∴(λ-289)=0

∴ The eigenvalues of the matrix A⋅A′ are given by λ=289,

1. Eigenvectors for λ=289

v1=
[ 1 ]



For Eigenvector-1 (1), Length L = √12=1

So, normalizing gives u1=(11)=(1)

A′⋅A

A′⋅A=
64 120
120 225



Find Eigen vector for A′⋅A

|A′⋅A-λI|=0

(64-λ) 120
120 (225-λ)
= 0



∴(64-λ)×(225-λ)-120×120=0

∴(14400-289λ+λ2)-14400=0

∴(λ2-289λ)=0

∴λ(λ-289)=0

∴λ=0or(λ-289)=0

∴ The eigenvalues of the matrix A′⋅A are given by λ=0,289,

1. Eigenvectors for λ=289

v1=
0.5333
1


2. Eigenvectors for λ=0

v2=
-1.875
1



For Eigenvector-1 (0.5333,1), Length L = √0.53332+12=1.1333

So, normalizing gives v1=(0.53331.1333,11.1333)=(0.4706,0.8824)

For Eigenvector-2 (-1.875,1), Length L = √(-1.875)2+12=2.125

So, normalizing gives v2=(-1.8752.125,12.125)=(-0.8824,0.4706)

Solution

∴Σ=
[ √289 0 ]
=
[ 17 0 ]


∴U= [u1] =
[ 1 ]



V is found using formula vi=1σiAT⋅ui

∴V=
0.4706 -0.8824
0.8824 0.4706

-----------------------------------------------==========================------------------------------------------------------------

Find Singular Value Decomposition (SVD) of a Matrix ...
[0 1

1 0

2- 2]

Solution:

A=
0 1
1 0
2 -2


A⋅A′

A⋅A′=
1 0 -2
0 1 2
-2 2 8



Find Eigen vector for A⋅A′

|A⋅A′-λI|=0

(1-λ) 0 -2
0 (1-λ) 2
-2 2 (8-λ)
= 0



∴(1-λ)((1-λ)×(8-λ)-2×2)-0(0×(8-λ)-2×(-2))+(-2)(0×2-(1-λ)×(-2))=0

∴(1-λ)((8-9λ+λ2)-4)-0(0-(-4))-2(0-(-2+2λ))=0

∴(1-λ)(4-9λ+λ2)-0(4)-2(2-2λ)=0

∴(4-13λ+10λ2-λ3)-0-(4-4λ)=0

∴(-λ3+10λ2-9λ)=0

∴-λ(λ-1)(λ-9)=0

∴λ=0or(λ-1)=0or(λ-9)=0

∴ The eigenvalues of the matrix A⋅A′ are given by λ=0,1,9,

1. Eigenvectors for λ=9

v1=
-0.25
0.25
1


2. Eigenvectors for λ=1

v2=
1
1
0


3. Eigenvectors for λ=0

v3=
2
-2
1



For Eigenvector-1 (-0.25,0.25,1), Length L = √(-0.25)2+0.252+12=1.0607

So, normalizing gives u1=(-0.251.0607,0.251.0607,11.0607)=(-0.2357,0.2357,0.9428)

For Eigenvector-2 (1,1,0), Length L = √12+12+02=1.4142

So, normalizing gives u2=(11.4142,11.4142,01.4142)=(0.7071,0.7071,0)

For Eigenvector-3 (2,-2,1), Length L = √22+(-2)2+12=3

So, normalizing gives u3=(23,-23,13)=(0.6667,-0.6667,0.3333)

A′⋅A

A′⋅A=
5 -4
-4 5



Find Eigen vector for A′⋅A

|A′⋅A-λI|=0

(5-λ) -4
-4 (5-λ)
= 0



∴(5-λ)×(5-λ)-(-4)×(-4)=0

∴(25-10λ+λ2)-16=0

∴(λ2-10λ+9)=0

∴(λ-1)(λ-9)=0

∴(λ-1)=0or(λ-9)=0

∴ The eigenvalues of the matrix A′⋅A are given by λ=1,9,

1. Eigenvectors for λ=9

v1=
-1
1


2. Eigenvectors for λ=1

v2=
1
1



For Eigenvector-1 (-1,1), Length L = √(-1)2+12=1.4142

So, normalizing gives v1=(-11.4142,11.4142)=(-0.7071,0.7071)

For Eigenvector-2 (1,1), Length L = √12+12=1.4142

So, normalizing gives v2=(11.4142,11.4142)=(0.7071,0.7071)

Solution

∴Σ=
√9 0
0 √1
0 0
=
3 0
0 1
0 0


∴U= [u1,u2,u3] =
-0.2357 0.7071 0.6667
0.2357 0.7071 -0.6667
0.9428 0 0.3333



V is found using formula vi=1σiAT⋅ui

∴V=
0.7071 0.7071
-0.7071 0.7071
Add a comment
Know the answer?
Add Answer to:
PPlease be as clear as possible. Thanks Find an SVD of the indicated matrix. (Enter each...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT