Question

The temperature of 2.26 kg of water is 34 °C. To cool the water, ice at...

The temperature of 2.26 kg of water is 34 °C. To cool the water, ice at 0 °C is added to it. The desired final temperature of the water is 11 °C. The latent heat of fusion for water is 33.5 × 104 J/kg, and the specific heat capacity of water is 4186 J/(kg·C°). Ignoring the container and any heat lost or gained to or from the surroundings, determine how much mass m of ice should be added.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

From the law of thermodynamics Heat lost = Heat gained

Heat gained by fusion + Heat gained by water formed from melted ice = Heat lost by warm water

m * 33.5 × 10^4 + m * 11 * 4186 = 2.26 * (34 - 11) * 4186

m ( 381046) = 217588.28

m (mass of ice) = 0.571 KG

Add a comment
Know the answer?
Add Answer to:
The temperature of 2.26 kg of water is 34 °C. To cool the water, ice at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The temperature of 2.7 kg of water is 34° C. To cool the water, ice at...

    The temperature of 2.7 kg of water is 34° C. To cool the water, ice at 0° C is added to it. The desired final temperature of the water is 11° C. The latent heat of fusion for water is 333.5 × 103 J/kg, and the specific heat capacity of water is 4186 J/(kg·C°). Ignoring the container and any heat lost or gained to or from the surroundings, determine how much mass m of ice should be added. m =  kg

  • How many grams of ice at -15°C must be added to 705 grams of water that...

    How many grams of ice at -15°C must be added to 705 grams of water that is initially at a temperature of 88°C to produce water at a final temperature of 11°C. Assume that no heat is lost to the surroundings and that the container has negligible mass. The specific heat of liquid water is 4190 J/kg·C° and of ice is 2050 J/kg·C°. For water the normal melting point is 0.00°C and the heat of fusion is 334 × 103...

  • A 0.07 kg ice cube at -300C is placed in 0.43 kg of 30.30C water in...

    A 0.07 kg ice cube at -300C is placed in 0.43 kg of 30.30C water in a very well-insulated container. What is the final temperature in degrees Celsius? Specific heat of ice = 2000 J/(kg.K), Specific heat of water = 4186 J/(kg.K), Latent heat of fusion of ice = 33.5 x 104 J/kg.

  • A 25.0-g block of ice at -15.00°C is dropped into a calorimeter (of negligible heat capacity)...

    A 25.0-g block of ice at -15.00°C is dropped into a calorimeter (of negligible heat capacity) containing water at 15.00°C. When equilibrium is reached, the final temperature is 8.00°C. How much water did the calorimeter contain initially? The specific heat of ice is 2090 J/kg ∙ K, that of water is 4186 J/kg ∙ K, and the latent heat of fusion of water is 33.5 × 104 J/kg.

  • 015 10.0 points A 34 g block of ice is cooled to -80°C. It is added...

    015 10.0 points A 34 g block of ice is cooled to -80°C. It is added to 562 g of water in an 75 g copper calorimeter at a temperature of 24°C. Find the final temperature. The specific heat of copper is 387 J/kg. °C and of ice is 2090 J/kg.°C. The latent heat of fusion of water is 3.33 x 10° J/kg and its specific heat is 4186 J/kg.°C. Answer in units of°C.

  • Calculate the final equilibrium temperature when 10.0 grams of steam initially at 100 degree C is...

    Calculate the final equilibrium temperature when 10.0 grams of steam initially at 100 degree C is mixed with 450 grams of liquid water and 110 grams of ice at 0 degree C in a calorimeter. That is, the liquid water AND the ice are initially at 0 degree C. Ignore any heat energy exchanges with the calorimeter and the surroundings. If you conclude that the final temperature of the system is 0 degree C, then what mass of ice remains,...

  • How much heat is required to change 456 g of ice at -20.0Degree C into water...

    How much heat is required to change 456 g of ice at -20.0Degree C into water at 25.0Degree C? specific heat of water = 4186]/(kg-K); specific heat of ice = 2090 J/(kg.K) and latent heat of fusion of water = 33.5 times 10^4 J/kg.

  • Calculate the heat required to raise the temperature of gm of ice at -25˚C to 70˚C....

    Calculate the heat required to raise the temperature of gm of ice at -25˚C to 70˚C. (Ice has a specific heat of 2100 J/(kg K),the latent heat of fusion for ice is 334,000 J/kg, specific of water is 4186 J/(kg K) and Melting point of ice = 0˚C). Units are kJ.

  • To cool her 0.200 kg cup of 75.0 C hot chocolate (mostly water), Heidi drops a...

    To cool her 0.200 kg cup of 75.0 C hot chocolate (mostly water), Heidi drops a 29,.97 g ice cube at 0 C into her insulated cup. After the ice cube melts, the temperature of the hot chocolate comes down to 54.8 C. a. How much energy was lost by the hot chocolate? The specific heat capacity of water is 1 cal/g C b. How much energy was gained by the ice cube just to melt to 0 C water?...

  • The energy needed to convert 2 kg of ice at -10 °C to water at 10...

    The energy needed to convert 2 kg of ice at -10 °C to water at 10 °C will be { Constants Given: Specific Heat of Water = 4186 J/kg ºc, Specific Heat of Ice = 2100 J/kg ºc, and Latent Heat of Fusion = 3.33 x 105 J/kg. }

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT