Question
solve in detail
Problem Statement Consider a simply supported beam with length L=1m, width w=25mm and height h. The beam has a mass m=10kg ha
0 0
Add a comment Improve this question Transcribed image text
Answer #1

mg mgh X6 10X9.81 x 3 - = Code pour) 30 (99) d= mgh 48E1 - 48 Expony 4E who (a allus) = 10 m since all other things are same

Add a comment
Know the answer?
Add Answer to:
solve in detail Problem Statement Consider a simply supported beam with length L=1m, width w=25mm and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The simply supported beam of length L is subjected to uniformly distributed load of w and...

    The simply supported beam of length L is subjected to uniformly distributed load of w and a vertical point load P at its middle, as shown in Figure Q3. Both young's modulus and second moment of area of this structure are given as E and I. Please provide your answers in terms of letters w, P,L,1, E. Self-weight of the beam is neglected. P W L/2 L/2 Figure Q3 (a) Determine the reactions, bending moment equation along the beam and...

  • Problem 2 Consider a simply supported symmetric I beam ABCD carrying a uniformly distributed load w and a concentrated...

    Problem 2 Consider a simply supported symmetric I beam ABCD carrying a uniformly distributed load w and a concentrated load F as shown in Figure 2. Young's modulus of the beam is 200 GPa F- 8 kNN 8cm 3cm 3cm w- 6 kN/m 6cm 2cm Figure 2 1) Replace the support C with the reaction force Rc, and using static equilibrium find the reactions at point A and B in terms of Ro 2) Using the boundary conditions, calculate the...

  • Problem 2 Consider a simply supported symmetric I beam ABCD carrying a uniformly distributed load w and a concentrated...

    Problem 2 Consider a simply supported symmetric I beam ABCD carrying a uniformly distributed load w and a concentrated load F as shown in Figure 2. Young's modulus of the beam is 200 GPa. F 8 kN 8cm 3cm 3cm 7 m 5 m 3 m 2cm W= 6 kN/m 6cm A D B 2cm 7TITT TITIT Figure 2 1) Replace the support C with the reaction force Rc, and using static equilibrium find the reactions at point A and...

  • Q2 The simply supported beam of length L is subjected to a vertical point load P...

    Q2 The simply supported beam of length L is subjected to a vertical point load P at its middle, as shown in Figure Q2. Both young's modulus and second moment of area of this structure are given as E and I. Please provide your answers in terms of letters P,L,1, E. Self-weight of the beam is neglected. P L/2 L/2 Figure Q2 (a) Determine the reactions, bending moment equation along the beam and draw the corresponding bending moment diagram. [10]...

  • Q2 The simply supported beam of length L is subjected to a vertical point load P...

    Q2 The simply supported beam of length L is subjected to a vertical point load P at its middle, as shown in Figure Q2. Both young's modulus and second moment of area of this structure are given as E and I. Please provide your answers in terms of letters P,L,1,E. Self-weight of the beam is neglected P L/2 L/2 Figure Q2 (a) Determine the reactions, bending moment equation along the beam and draw the corresponding bending moment diagram. [10] (b)...

  • 1 point) A simply supported steel beam shown below Click on the image to enlarge is 62 inches lon...

    1 point) A simply supported steel beam shown below Click on the image to enlarge is 62 inches long is designed to carry a load of 600 pounds in the center. It has a solid box cross-section as shown Click on the image to enlarge where b = 2 inches and h = 6 inches. Steel has the following material properties Modulus of Elasticity = 30106 psi and Density = 490 Ibm/ft3 Determine the moment of inertia, deflection, volume, and...

  • (1 point) A simply supported steel beam shown below Click on the image to enlarge is...

    (1 point) A simply supported steel beam shown below Click on the image to enlarge is 64 inches long is designed to carry a load of 500 pounds in the center. It has a solid box cross-section as shown b Click on the image to enlarge where b = 2.25 inches and h = 6 inches. Steel has the following material properties: Modulus of Elasticity = 30x10 psi and Density = 490 lbmlft. Determine the moment of inertia, deflection, volume,...

  • Q2. A simply supported beam AB (Figure 2) supports a uniformly distributed load of q =...

    Q2. A simply supported beam AB (Figure 2) supports a uniformly distributed load of q = 18kN/m and a concentrated load of P = 23kN at the centre. Consider length of the beam, L = 3m, Young's modulus, E = 200GPa and moment of inertial, I = 30 x 10 mm-. Assume the deflection of the beam can be expressed by elastic curve equations of the form: y(x) = Ax4 + Bx3 + Cx2 + Dx + E. 1) Sketch...

  • ans all parts please 15) (10 Points) Consider a horizontal beam of length L. with uniform...

    ans all parts please 15) (10 Points) Consider a horizontal beam of length L. with uniform cross-section and made out of uniform material. It is resting on the x-axis, with one end at the origin. It is acted upon by a vertical force it's own weight in this simple version). The deflection of the beam at any point x,for 0 <=<L.is given by Ely) = w, where E, I, ware constants. E is the Young's modulus of elasticity of the...

  • The simply supported beam has length L, elasticity modulus E, and cross-section with moment of inertia...

    The simply supported beam has length L, elasticity modulus E, and cross-section with moment of inertia I. A concentrated force is applied at half point, as illustrated below 1/2 1/2 o The deflection curve for the the first half of the beam is given by: 21 (2) = + (- +) Obtain the equation for the deflection curve y(x) for L/2 < x < L, where: y2(x) = (Ao + A1 x + A2 x2 + A3 x3) When solving...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT