Question

3.36 A straight rectangular fin of leneth L, thickness t and width W The upper surface being heated at a uniform flux q0.The heat transfer coefficient at the upper surface is hu and that of the lower surface is h. The ambient fluid teperature qo is To. At the base the heat transfer rate is o The two side surfaces and the tip are t insulated. Formulate the fin conduction equation and write the boundary conditions.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ld KAL)tL 白2-(%) 2 d12 CA Cn Contatr 月: bounday 서 χ구 (9.(9 dr2l CIT T-To

Add a comment
Know the answer?
Add Answer to:
3.36 A straight rectangular fin of leneth L, thickness t and width W The upper surface...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a rectangular fin (k = 180 W/m-K) of length L =10 mm, thickness i =1...

    Consider a rectangular fin (k = 180 W/m-K) of length L =10 mm, thickness i =1 mm, and width w» t. The base temperature of the finis Ty = 150°C, and the finis exposed to a fluid of temperature T, =25°C. Assuming a uniform convection coefficient of h = 110 W/m2.K over the entire fin surface, determine the fin heat transfer rate per unit width 4; efficiency ng: effectiveness es, thermal resistance per unit width and the tip temperature T...

  • a rectangular fin (k= 235w/m*K) is attached to a wall and has a length of 5...

    a rectangular fin (k= 235w/m*K) is attached to a wall and has a length of 5 cm, a width of 10 cm, and a thickness of 5 mm. the surface temperature of the wall is 350 degrees Celcius and the ambient air is 25 degrees celcius. what is the efficiency, the heat transfer rate, and the fin effectiveness? assume an adiabatic fin tip condition and a convection heat transfer coefficient of 154 W/m^2 * K  

  • A circular (annular) fin of radius r2 is attached to a pipe of radius 11. The...

    A circular (annular) fin of radius r2 is attached to a pipe of radius 11. The fin is exposed to an ambient fluid at temperature T. having heat transfer coefficient h and the fin base is maintained at temperature Tb. The fin thickness (t) is small compared to the fin length and the heat loss from the fin tip can be considered negligible compared with that from the top and bottom surfaces of the fin. Derive the differential equation and...

  • Problem 3: Ordinary Differential Equations A straight fin of uniform rectangular cross section (0.5 mm x...

    Problem 3: Ordinary Differential Equations A straight fin of uniform rectangular cross section (0.5 mm x 100 mm) with a length (L) of 5 cm is attached to a base surface of temperature 110°C (T). The surface of the fin is exposed to a cooling fluid at 20°C (T) with a convection heat transfer coefficient (h) of 15 W/(m²K). The conductivity (k) of the fin material is 400 W/(m.K). (a) Plot the temperature profile along the length of the fin,...

  • The heat that is conducted through a body must frequently be removed by other heat transfer...

    The heat that is conducted through a body must frequently be removed by other heat transfer processes. For example, the heat generated in an electronic device must be dissipated to the surroundings through convection by means of fins. Consider the one-dimensional aluminum fin (thickness t 3.0 mm, width 20 cm, length L) shown in Figure 1, that is exposed to a surrounding fluid at a temperature T. The conductivity of the aluminum fin (k) and coefficient of heat convection of...

  • please show derivation of the nodal equations and how to create the graphs. A straight fin...

    please show derivation of the nodal equations and how to create the graphs. A straight fin of uniform cross section is fabricated from a material of thermal conductivity 50 W/m*K, thickness w 6mm, and length L-48mm, and is very long in the direction normal to the page. The convection heat transfer coefficient is 500 W/m2 *K with the ambient air temperature of T-30C. The base of the fin is maintained at Tb = 100C, while the fin tip is will...

  • A plate of thickness L is initially at uniform temperature Ti. A second plate of the same materia...

    A plate of thickness L is initially at uniform temperature Ti. A second plate of the same material of thickness L2 is initially at uniform temperature T2. At t20 the two plates are fastened together with a perfect contact at the interface. Simultaneously, the surface of one plate is heated with uniform flux qo and the opposite surface begins to exchange heat by convection with the surroundings. The heat transfer coefficient is h and the ambient temperature is T Determine...

  • A thin flat plate of length L, thickness t, and width W> L is thermally joined...

    A thin flat plate of length L, thickness t, and width W> L is thermally joined to two large heat sinks that are maintained at a temperature T.. The bottom of the plate is well insulated, while the net heat flux to the top surface of the plate is known to have a uniform value of Heat sink T. Heat sink T. a) Derive the differential equation that determines the steady-state temperature distribution T(x) in the plate. b) Solve the...

  • Consider a single stack of rectangular fins of length L and thickness t, with convection conditions...

    Consider a single stack of rectangular fins of length L and thickness t, with convection conditions corresponding to h and To. The bottom plate is well-insulated and an adiabatic fin tip condition may be assumed (a) Obtain the expression for the fin heat transfer rate (b) In a specific application, a stack that is 200 mm wide and 100 mm deep contains 50 fins, each of length L - 12 mm. The base and fins are made from aluminum (k...

  • 1) 2) 3) PROJECT #1 (2.5 Marks): The heat that is conducted through a body must...

    1) 2) 3) PROJECT #1 (2.5 Marks): The heat that is conducted through a body must frequently be removed by other heat transter processes. For example, the heat generated in an electronic device must be dissipated to the surroundings through convection by means of fins. Consider the one-dimensional aluminum fin (thickness t 3.0 mm, width Z 20 cm, length L) shown in Figure 1, that is exposed to a surrounding fluid at a temperature 1. The conductivity of the aluminum...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT