Question

a large number of hydrogen atoms have their electrons excited to the n=3 energy state. A....

a large number of hydrogen atoms have their electrons excited to the n=3 energy state. A. digram all possible electron transitions producing a spectral line in the emission spectrum. B. calculate the wavelength for each of the transitions

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Y t.eq1+aXp+ (.下ㄧ = 1.22 X 10 mm 千 λ __l.oux10tm -0.15시0구- ー

Add a comment
Know the answer?
Add Answer to:
a large number of hydrogen atoms have their electrons excited to the n=3 energy state. A....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Hydrogen atoms are excited by a laser to the n = 4 state and then allowed...

    Hydrogen atoms are excited by a laser to the n = 4 state and then allowed to emit. What is the maximum number of distinct emission spectral lines (lines of different wavelengths) that can be observed from this system? Calculate the wavelength of the 4 -> 2 transition.

  • Hydrogen atoms are excited by a laser to the n = 4 state and then allowed...

    Hydrogen atoms are excited by a laser to the n = 4 state and then allowed to emit. What is the maximum number of distinct emission spectral lines (lines of different wavelengths) that can be observed from this system? Calculate the wavelength of the 2 - 1 transition 1.87 x10-6

  • 6. A stream of laser photons with a frequency of 3.0x1015 Hz excited electrons in the...

    6. A stream of laser photons with a frequency of 3.0x1015 Hz excited electrons in the lowest energy of the hydrogen atom shown in the energy level diagram below Energy a. Show to what level the photon excited the electron. -6.02x10-20 -8.72x10 b. Show all the possible emission transitions as the 1.36x10-19J state. tron returns from the n = 3 energy level to the ground 242x1-19 c. Calculate AE for each line produced in b. -5.45x1019 -2.18x101 d. What is...

  • 4 Suppose hydrogen atoms absorb energy so that electrons are excited to the n-7 energy level. Ele...

    4 Suppose hydrogen atoms absorb energy so that electrons are excited to the n-7 energy level. Electrons then undergo these transitions, among others (a) n 7 to n- (b) n 7 to n-6 (c) n-2 to n-1 Enter the letter (a, b, or c) for each. the smallest energy? the highest frequency? the shortest wavelength? What is the frequency of a photon resulting from the transition n-6 → n-1? h -6.62 x 10-34 J-s 4 Suppose hydrogen atoms absorb energy...

  • Hydrogen atoms absorb energy so that electrons can be excited to the n = 5 energy...

    Hydrogen atoms absorb energy so that electrons can be excited to the n = 5 energy level. Electrons then undergo these transitions, among others: (a) n = 4 → n = 3 (b) n = 5 → n = 2 (c) n = 5 → n = 3 (i) Which transition produces a photon with the least energy? (ii) Which transition produces a photon with the highest frequency? (iii) Which transition produces a photon with the shortest wavelength?

  • Hydrogen atoms absorb energy so that electrons can be excited to the n = 5 energy...

    Hydrogen atoms absorb energy so that electrons can be excited to the n = 5 energy level. Electrons then undergo these transitions, among others: (a) n = 5 → n = 3 (b) n = 5 → n = 2 (c) n = 4 → n = 1 (i) Which transition produces a photon with the least energy? (ii) Which transition produces a photon with the highest frequency? (iii) Which transition produces a photon with the shortest wavelength?

  • Hydrogen atoms are excited by a laser to the state and then allowed to emit. What...

    Hydrogen atoms are excited by a laser to the state and then allowed to emit. What is the maximum number of distinct emission spectral lines (lines of different wavelengths) that can be observed from this system? 03 OOOOOO Calculate the wavelength of the 4 2 transition

  • Electronically excited hydrogen emits in the visible part of the spectrum in a series of lines...

    Electronically excited hydrogen emits in the visible part of the spectrum in a series of lines known as the Balmer series. Each of these transitions terminates in the n=2 level of hydrogen. What is the energy and wavelength and upper state quantum number for the first four of these transitions starting with the longest wavelength emission?

  • The visible region of the hydrogen spectrum results from relaxation of electrons from excited states to...

    The visible region of the hydrogen spectrum results from relaxation of electrons from excited states to energy level 2 (n1). Use the Rydberg equation and your measured wavelengths to determine the energy transitions associated with each of your observed wavelengths for hydrogen. In other words, calculate the excited state energy level (n2) for each of your observed wavelengths for hydrogen. n has integer values; so, calculate it first with appropriate significant digits, then round it to an integer. values :...

  • 4. When a hydrogen atom is bombarded, the atom may be raised into a higher energy state. As the excited electron f...

    4. When a hydrogen atom is bombarded, the atom may be raised into a higher energy state. As the excited electron falls back to the lower energy levels, light is emitted. What are the three longest-wavelength spectral lines emitted by the hydrogen atom as it returns to the n = 1 state from higher energy states? Give your answers to three significant figures. The lowest possible state, n = 1, corresponds to the electron in its smallest possible orbit; it...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT