Question

1) You place a book of mass 5.00 kg against a vertical wall. You apply a...

1) You place a book of mass 5.00 kg against a vertical wall. You apply a constant force F⃗ to the book, where F = 99.0 N and the force is at angle of 60.0∘ above the horizontal (Figure 1) . The coefficient of kinetic friction between the book and the wall is 0.300.

a) If the book is initially at rest, what is its speed after it has traveled 0.400 m up the wall.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Here ,

mass of book, m = 5 Kg

F = 99 N

theta = 60 degree

coefficient of kinetic friction, u = 0.300

a)

Normal force acting on the book

N = F * cos(60)

N = 99 * cos(60)

N = 49.5 N

let the final speed of the book is v m/s

Using Work energy theorum

0.5 * m * v^2 = F * sin(theta) * d - m*g * d - u * N * d

0.5 * 5 * v^2 = 99* sin(60) * 0.4 - 5 * 9.8 * 0.4 - 0.300 * 49.5 * 0.4

solving for u

u = 1.87 m/s

the speed of the book after travelling 0.4 m is 1.87 m/s

Add a comment
Know the answer?
Add Answer to:
1) You place a book of mass 5.00 kg against a vertical wall. You apply a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 10 kg block is pushed against a vertical wall by a horizontal force of 100...

    A 10 kg block is pushed against a vertical wall by a horizontal force of 100 N as shown in the figure the coefficient of static friction between the block and the wall is 0.60 and the coefficient of kinetic friction is 0.40 which of the following statements is true if the block is initially at rest 1) The block slides down the wall with an acceleration of magnitude 3.8 m/s2 The block will slide down the wall because the...

  • A spring with k=130.0 N/m on surface is mounted to a vertical wall. A 5.00-kg box...

    A spring with k=130.0 N/m on surface is mounted to a vertical wall. A 5.00-kg box on the surface is placed in front of the spring. The coefficient of kinetic friction between the box and the surface is ylik = 0.400. A constant force F is applied to the box. F has magnitude 89.0 N and is directed against the wall. The spring is compressed 80.0 cm. Problem 5 Express your answer with the appropriate units. A spring with k=130.0...

  • 3. (20 points) A block m = 5.00 kg is pushed up an inclined plane of angle 60.0°, as shown in Figure 4. There is fricti...

    3. (20 points) A block m = 5.00 kg is pushed up an inclined plane of angle 60.0°, as shown in Figure 4. There is friction between the surface of the block and plane. The coefficient of static friction is his = 0.400, and the coefficient of kinetic friction is pk = 0.300. (a) Find the minimum applied force F such that the block remains on the plane without moving. (b) If F = 60.0 N and the length of...

  • A 11 N horizontal force F pushes a block weighing 4.3 N against a vertical wall...

    A 11 N horizontal force F pushes a block weighing 4.3 N against a vertical wall (see the figure). The coefficient of static friction between the wall and the block is 0.58, and the coefficient of kinetic friction is 0.37. Assume that the block is not moving initially. (a) Will the block move? (“yes” or “no”) (b) In unit-vector notation Fxi + Fyj, what is the force on the block from the wall? Chapter 06, Problem 019 A 11 N...

  • A 20 N horizontal force F pushes a block weighing 3.0 N against a vertical wall....

    A 20 N horizontal force F pushes a block weighing 3.0 N against a vertical wall. The coefficient of static friction between the wall and the block is 0.60, and the coefficient of kinetic friction is 0.40. Assume that the block is not moving initially. In unit-vector notation, what is the force exerted on the block by the wall? (___)N ihad + (____)N jhad A 20 N horizontal force F pushes a block weighing 3.0 N against a vertical wall....

  • A 2.74 kg block is pushed 1.41 m up a vertical wall with a constant speed...

    A 2.74 kg block is pushed 1.41 m up a vertical wall with a constant speed by a constant force of magnitude F applied at an angle of 66.3 with the horizontal. The acceleration of gravity is 9.8 m/s2. If the coefficient of kinetic friction between the block and wall 0.415, find the work done by F. A 2.74 kg block is pushed 1.41 m up a vertical wall with a constant speed by a constant force of magnitude F...

  • A 8.00 kg block is pressed against a vertical wall by a force (→F), as shown...

    A 8.00 kg block is pressed against a vertical wall by a force (→F), as shown in the figure below. The coefficient of static friction between the block and the wall is 0.31 and the directional angle θ for the force is 42.0°. Determine the magnitude of the force (→F) when the block is about to slide down the wall.

  • A 15 N horizontal force F pushes a block weighing 3.0 N against a vertical wall...

    A 15 N horizontal force F pushes a block weighing 3.0 N against a vertical wall (see the figure). The coefficient of static friction between the wall and the block is 0.S9, and the coefficient of kinetic friction ÍS 47. Assume that the block is not moving initially. (a) Will the block move? ( yes. or ro. (b) In unit-vector notation Fx + Fy , what is the force on the block from the wall? (b) Number Unts

  • 1 You pin a 0.15 kg block against a vertical wall applying a horizontal force. If...

    1 You pin a 0.15 kg block against a vertical wall applying a horizontal force. If the coefficient of static friction between the block & the wall in 0.82, then what is the minimum magnitude of the applied force such that the block will not slide? a) 8.IN b) 8.4 N C) 679 d) 9.0N e) 9.3N

  • A 12 N horizontal force F pushes a block weighing 5.0 N against a vertical wall...

    A 12 N horizontal force F pushes a block weighing 5.0 N against a vertical wall (Fig. 6-26). The coefficient of static friction between the wall and the block is 0.60, and the coefficient of kinetic friction is 0.40. Assume that the block is not moving initially, (a) Will the block move? (b) In unit-vector notation, what is the force on the block from the wall?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT