Question

Page 3 of 3 A current-carrying circular loop of wire (radius r, current I) is partially immersed in a magnetic field of constant magnitude Bo directed out of the page as shown in the figure below. Determine the net force on the loop due to the field in terms of 0o. Note the direction of x and y coordinates and the following double angle trigonometric identity, cos(2a) 1-sin (a) Q7. B-0 B-0
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Page 3 of 3 A current-carrying circular loop of wire (radius r, current I) is partially...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A current-carrying circular loop of wire (radius r, current I) is partially immersed in a magnetic field of constant magnitude B0

    A current-carrying circular loop of wire (radius r, current I) is partially immersed in a magnetic field of constant magnitude B0 directed out of the page as shown in the figure.(Figure 1) Part A Determine the x, y, and z projections of the net force on the loop due to the field in terms of θ0. (Note that θ0 points to the dashed line, above which B = 0.) 

  • A flat circular loop of wire of radius R carrying a current I is placed in...

    A flat circular loop of wire of radius R carrying a current I is placed in a uniform magnetic field B that is directed in the plane of the current loop. What is the magnetic moment M of the loop? What is the magnitude of the torque acting on the loop? In which direction the loop will rotate under the influence of this torque?

  • 4. Consider a circular loop of wire with a mass m and a radius R. The...

    4. Consider a circular loop of wire with a mass m and a radius R. The circular loop is vertical such that gravitational force on the loop points straight down. You may assume this is near the surface of the earth such that the force of gravity has a magnitude FGl mg. The upper half of the circular wire is immersed in a uniform magnetic field B pointing into the page. In the figure below this corresponds to the region...

  • A circular loop of wire, with radius 22 cm and carrying a current of 0.30 A,...

    A circular loop of wire, with radius 22 cm and carrying a current of 0.30 A, lies perpendicular to a magnetic field of 2.3*10^-3 T. (a) What is the torque on the current loop? (b) What is the energy of the loop in the magnetic field?

  • A circular loop of wire of radius R carries a current I in a region where...

    A circular loop of wire of radius R carries a current I in a region where a uniform magnetic field of magnitude B0 is present. (a) If the magnetic dipole moment of the loop makes an angle θ < π/2 with the magnetic field, do a drawing that includes the loop of current, its magnetic dipole moment, the magnetic field, and the direction of the torque experienced by the loop. Make sure to indicate the current i and the angle...

  • A single current-carrying circular loop of radius R is placed next to a long, straight wire,...

    A single current-carrying circular loop of radius R is placed next to a long, straight wire, as shown in the figure. The current I in the wire flows to the right and the a current I flows counter-clockwise on the loop. What is the net magnetic field produce at the center of the loop? I R/2

  • Q1. (25 points) A circular loop of wire of resistance R = 4 N and radius...

    Q1. (25 points) A circular loop of wire of resistance R = 4 N and radius r = 30 cm is in a uniform magnetic field directed out of the page as shown in the figure. a) (7 points) If a clockwise current of 1 = 20 mA is induced in the loop, is the magnetic field increasing or decreasing in time? b) (8 points) Find the induced emf in the loop. c) (10 points) Find the rate at which...

  • 4. A long straight wire carrying a current is in the plane of a circular loop...

    4. A long straight wire carrying a current is in the plane of a circular loop of wire. The current is decreasing. Both the loop and the wire are held in place by external forces. The loop has a resistance of 24. -Long wire Conducting loop a) In what direction does the induced current in the loop flow? Mint: first find the external magnetic field at the loop due to the long wire, figure out if the flux through the...

  • IP A single current-carrying circular loop of radius R is placed next to a long, straight...

    IP A single current-carrying circular loop of radius R is placed next to a long, straight wire, as shown in the figure(Figure 1) . The current in the wire points to the right and is of magnitude I. A. In which direction must current flow in the loop to produce zero magnetic field at its center? Explain. B. Calculate the magnitude of the current in part A. Express your answer in terms of some or all of the variables R,...

  • Matlab Please! A small, circular wire loop of radius a and constant current I works as...

    Matlab Please! A small, circular wire loop of radius a and constant current I works as a "magnetic dipole," having a north pole and a south pole as defined by the right hand rule as shown below. At a distance R a from the center of the loop, the magnetic flux density is given by 4R3 Let I 10 mA, a 0.1 cm, and plot the magnetic field in the y-z plane for -1 s y s 1,-1 s Z...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT