Question

consider T(x)= A (x)

[1 2 0 3 6 1 2 4 1 1 2 3 -1 2 9 2 1 5 10 11 0 (a) Find a basis for the nullspace (kernel) of T. (b) Find a basis for the rang

0 0
Add a comment Improve this question Transcribed image text
Answer #1

A=\left[ \begin{array}{ccccc} 1 & 2 & 0 & -1 & 1 \\\\ 3 & 6 & 1 & 2 & 5 \\\\ 2 & 4 & 1 & 9 & 10 \\\\ 1 & 2 & 3 & 2 & 0 \end{array} \right] \longrightarrow_{R_2=R_2-3R_1} \left[ \begin{array}{ccccc} 1 & 2 & 0 & -1 & 1 \\\\ 0 & 0 & 1 & 5 & 2 \\\\ 2 & 4 & 1 & 9 & 10 \\\\ 1 & 2 & 3 & 2 & 0 \end{array} \right] \\ \\\longrightarrow_{R_3=R_3-2R_1} \left[ \begin{array}{ccccc} 1 & 2 & 0 & -1 & 1 \\\\ 0 & 0 & 1 & 5 & 2 \\\\ 0 & 0 & 1 & 11 & 8 \\\\ 1 & 2 & 3 & 2 & 0 \end{array} \right] \longrightarrow_{R_4=R_4-R_1} \left[ \begin{array}{ccccc} 1 & 2 & 0 & -1 & 1 \\\\ 0 & 0 & 1 & 5 & 2 \\\\ 0 & 0 & 1 & 11 & 8 \\\\ 0 & 0 & 3 & 3 & -1 \end{array} \right]

\\\longrightarrow_{R_3=R_3-R_2} \left[ \begin{array}{ccccc} 1 & 2 & 0 & -1 & 1 \\\\ 0 & 0 & 1 & 5 & 2 \\\\ 0 & 0 & 0 & 6 & 6 \\\\ 0 & 0 & 3 & 3 & -1 \end{array} \right] \longrightarrow_{R_4=R_4-3R_2}\left[ \begin{array}{ccccc} 1 & 2 & 0 & -1 & 1 \\\\ 0 & 0 & 1 & 5 & 2 \\\\ 0 & 0 & 0 & 6 & 6 \\\\ 0 & 0 & 0 & -12 & -7 \end{array} \right]\\ \longrightarrow_{R_4=R_4+2R_3} \left[ \begin{array}{ccccc} 1 & 2 & 0 & -1 & 1 \\\\ 0 & 0 & 1 & 5 & 2 \\\\ 0 & 0 & 0 & 6 & 6 \\\\ 0 & 0 & 0 & 0 & 5 \end{array} \right]

\longrightarrow_{R_5=\frac{1}{5}R_5,~R_4=\frac{1}{6}R_4} \left[ \begin{array}{ccccc} 1 & 2 & 0 & -1 & 1 \\\\ 0 & 0 & 1 & 5 & 2 \\\\ 0 & 0 & 0 & 1 & 1 \\\\ 0 & 0 & 0 & 0 & 1 \end{array} \right]=B

a) B is the row reduced form of A, thus for null space A, we consider BX=O, then

\left[ \begin{array}{ccccc} 1 & 2 & 0 & -1 & 1 \\\\ 0 & 0 & 1 & 5 & 2 \\\\ 0 & 0 & 0 & 1 & 1 \\\\ 0 & 0 & 0 & 0 & 1 \end{array} \right] \left[ \begin{array}{c} x_{1} \\\\ x_{2} \\\\ x_{3} \\\\ x_{4}\\\\ x_{5} \end{array} \right] =\left[ \begin{array}{c} 0 \\\\ 0 \\\\ 0 \\\\ 0\\\\ 0 \end{array} \right] \\ \\=>x_1+2x_2-x_4+x_5=0,~x_3+5x_4+2x_5=0,~x_4+x_5=0,~x_5=0.\\ =>x_5=0=>x_4=0=>x_3=0=> x_1+2x_2=0. \\(x_1,x_2,x_3,x_4,x_5)=(-2x_2,x_2,0,0,0)=(-2,1,0,0,0)x_2.

Thus basis for null space is {(-2,1,0,0,0)}.

b) Not that 1st, 3rd,4th and 5th columns of B contains leading 1. Thus the corresponding columns of the original matrix B wil give the basis elements for column space, that is range.

Thus basis for range is {(1,3,2,1),(0,1,1,3),(-1,2,9,2),(1,5,10,0).

c) rank = 4, and nullity =1.

Add a comment
Know the answer?
Add Answer to:
consider T(x)= A (x) [1 2 0 3 6 1 2 4 1 1 2 3...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT