Question

Recall that the time evolution of a wavefunction y(x, t) is determined by the Schrödinger equation, which in position space r

c) Use your results from part a), or arguments similar to them, to show that the probability density P(x, t) = (2,t) and the

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) The time derivative of inner product of the two normalized solutions of Schroedinger equation is

\frac{d}{dt}\int_{-\infty}^{\infty}\psi_{1}^{*}(x,t)\psi_{2}(x,t)dx = \int_{-\infty}^{\infty}\frac{\partial }{\partial t}\left(\psi_{1}^{*}(x,t)\psi_{2}(x,t)\right)dx = \int_{-\infty}^{\infty}\left( \psi_{2}\frac{\partial \psi_{1}^{*}}{\partial t}+\psi_{1}^{*}\frac{\partial \psi_{2}}{\partial t}\right )dx \quad (1)

Now using the Schroedinger equation and its complex conjugate

i\hbar\frac{\partial }{\partial t}\psi(x,t) = -\frac{\hbar^{2}}{2m}\frac{\partial^2 }{\partial x^2}\psi(x,t)+V(x,t)\psi(x,t) \quad (2)

-i\hbar\frac{\partial }{\partial t}\psi^{*}(x,t) = -\frac{\hbar^{2}}{2m}\frac{\partial^2 }{\partial x^2}\psi^{*}(x,t)+V(x,t)\psi^{*}(x,t) \quad (3)

we get

\frac{d}{dt}\int_{-\infty}^{\infty}\psi_{1}^{*}(x,t)\psi_{2}(x,t)dx = \int_{-\infty}^{\infty}\psi_{2}\left(\frac{\hbar^{2}}{2mi}\frac{\partial^2 \psi_{1}^{*}}{\partial x^2}+\frac{iV}{\hbar}\psi_{1}^{*} \right ) + \int_{-\infty}^{\infty}\psi^{*}_{1}\left(\frac{-\hbar^{2}}{2mi}\frac{\partial^2 \psi_{2}}{\partial x^2}-\frac{iV}{\hbar}\psi_{2} \right )\Rightarrow

\frac{d}{dt}\int_{-\infty}^{\infty}\psi_{1}^{*}(x,t)\psi_{2}(x,t)dx = \frac{\hbar^{2}}{2mi}\int_{-\infty}^{\infty}\left(\psi_{2}\frac{\partial^2 \psi_{1}^{*}}{\partial x^2}- \psi_{1}^{*}\frac{\partial^2 \psi_{2}}{\partial x^2}\right ) dx = \frac{\hbar^{2}}{2mi}\int_{-\infty}^{\infty}\frac{\partial }{\partial x}\left(\psi_{2}\frac{\partial \psi_{1}^{*}}{\partial x}- \psi_{1}^{*}\frac{\partial \psi_{2}}{\partial x}\right ) dx \quad (4)

Now the integrand is a full derivative of x, therefore it can be easily integrated to get

\frac{d}{dt}\int_{-\infty}^{\infty}\psi_{1}^{*}(x,t)\psi_{2}(x,t)dx = \frac{\hbar^{2}}{2mi}\left(\psi_{2}\frac{\partial \psi_{1}^{*}}{\partial x}- \psi_{1}^{*}\frac{\partial \psi_{2}}{\partial x}\right )_{x=\infty}-\frac{\hbar^{2}}{2mi}\left(\psi_{2}\frac{\partial \psi_{1}^{*}}{\partial x}- \psi_{1}^{*}\frac{\partial \psi_{2}}{\partial x}\right )_{x=-\infty} \quad (5)

For a normalized wave function we must have

\lim_{x\to\pm\infty}\psi(x,t) = 0

or else the integral

\int_{-\infty}^{\infty}|\psi(x,t)|^{2}dx

will not converge.

Hence we get

\frac{d}{dt}\int_{-\infty}^{\infty}\psi_{1}^{*}(x,t)\psi_{2}(x,t)dx = 0 \quad (6)

b) The normalization of the initial wave function is

\int_{-\infty}^{\infty}\psi^{*}(x,0)\psi(x,0)dx = \int_{-\infty}^{\infty}|\psi(x,0)|^{2}dx = 1 \quad (7)

From part (a) we can deduce that

\frac{d}{dt}\int_{-\infty}^{\infty}\psi^{*}(x,t)\psi(x,t)dx = 0\Rightarrow \int_{-\infty}^{\infty}\psi^{*}(x,t)\psi(x,t)dx = 1 \quad (8)

this normalization is conserved. This is important because in quantum mechanics |\psi(x,t)|^{2} is interpreted as probability density and a probability density function should always be normalized.

c) Consider again the Schroedinger equation and its complex conjugate

i\hbar\frac{\partial }{\partial t}\psi(x,t) = -\frac{\hbar^{2}}{2m}\frac{\partial^2 }{\partial x^2}\psi(x,t)+V(x,t)\psi(x,t) \quad (9)

-i\hbar\frac{\partial }{\partial t}\psi^{*}(x,t) = -\frac{\hbar^{2}}{2m}\frac{\partial^2 }{\partial x^2}\psi^{*}(x,t)+V(x,t)\psi^{*}(x,t) \quad (10)

Multiply (9) by \psi^{*} and (10) by \psi then subtract (10) from (9)

i\hbar\frac{\partial }{\partial t}\left(\psi^{*}\psi \right ) = \frac{\hbar^{2}}{2m}\left(\psi\frac{\partial^2 \psi^{*}}{\partial x^2}-\psi^{*}\frac{\partial^2 \psi}{\partial x^2} \right ) \quad (11)

Defining

\mathcal{P}(x,t) = |\psi(x,t)|^{2} \quad (12)

and

J(x,t) = \frac{i\hbar}{2m}\left(\psi\frac{\partial \psi^{*}}{\partial x}-\psi^{*}\frac{\partial \psi}{\partial x} \right ) \quad (13)

Equation (11) can be written as

\frac{\partial \mathcal{P}(x,t)}{\partial t}+\frac{\partial J(x,t)}{\partial x} = 0 \quad (14)

Integrating equation (14) from a to b we get

\int_{a}^{b}\frac{\partial \mathcal{P}(x,t)}{\partial t}dx = \frac{\mathrm{d} }{\mathrm{d} t}\int_{a}^{b}\mathcal{P}(x,t)dx = \frac{\mathrm{d} \mathcal{P}_{ab}}{\mathrm{d} t} = -\int_{a}^{b}\frac{\partial J(x,t)}{\partial x}dx = J(a,t)-J(b,t) \quad (15)

Add a comment
Know the answer?
Add Answer to:
Recall that the time evolution of a wavefunction y(x, t) is determined by the Schrödinger equation,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT