Question

A mass m is attached to both a spring (with given spring constant k) and a dashpot (with given damping constant c). The mass

4 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer: Givers that Consider the mass m attached to the spring with initial position to and initial velocity vo WMA mal C= 67 +6 Y+0 + 3y + 3x + 9 = 0 Y(7+3) + 3(x+3): 0 (v + 3) = 0 -) = -3, -3 Hence the roots are 8 = - 82 = -3 The solution is given7 + 9 + 7 -9 8 = + 3 8 +3 82 = 3 given by The undamped function is xct), A COS Y t + B sin ot Hence the position function is

Add a comment
Know the answer?
Add Answer to:
A mass m is attached to both a spring (with given spring constant k) and a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Math 216 Homework WebHWI, PIUUIUM A mass with mass 7 is attached to a spring with...

    Math 216 Homework WebHWI, PIUUIUM A mass with mass 7 is attached to a spring with spring constant 42 and a dashpot giving a damping 55. The mass is set in motion with initial position 6 and initial velocity 8. (All values are given in consistent units) Find the position function (t) = The motion is (select the correct description) A. underdamped B. overdamped C. critically damped 0 ). Finally find the undamped position function u(t) = Cocos(wist - 00)...

  • Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant...

    Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant is c =24 lb-sec/ft, and the spring constant is k=52lb/ft. The motion is free damped motion and the mass is set in motion with initial position x0=5ft and the initial velocity v0= -7ft/sec. Find the position function x(t) and determine whether the motion is overdamped, critically damped, or underdamped.

  • (1 point) A mass m = 4 kg is attached to both a spring with spring...

    (1 point) A mass m = 4 kg is attached to both a spring with spring constant k = 325 N/m and a dash-pot with damping constant c=4N s/m. The mass is started in motion with initial position Xo = 1 m and initial velocity vo = 9 m/s. Determine the position function z(t) in meters. x(t) = Note that, in this problem, the motion of the spring is underdamped, therefore the solution can be written in the form x(t)...

  • PART A PART B PART C PART D (1 point) A mass m = 4 kg...

    PART A PART B PART C PART D (1 point) A mass m = 4 kg is attached to both a spring with spring constant k = 197 N/m and a dash-pot with damping constant c=4N s/m. The mass is started in motion with initial position to 3 m and initial velocity vo = 6 m/s. Determine the position function r(t) in meters. x(1) Note that, in this problem, the motion of the spring is underdamped, therefore the solution can...

  • (1 point) This problem is an example of critically damped harmonic motion. A mass m =...

    (1 point) This problem is an example of critically damped harmonic motion. A mass m = 6 kg is attached to both a spring with spring constant k = 150 N/m and a dash-pot with damping constant c = 60 N· s/m . The ball is started in motion with initial position Xo = 8 m and initial velocity vo = -42 m/s. Determine the position function x(t) in meters. x(t) = Graph the function x(t). Now assume the mass...

  • 6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is...

    6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is then submerged in a liquid that inparts a damping force equal to 4 tines the instantansous velocity. At t = 0 the mass is released from the equilibrium position with no initial velocity. An external force t)4t-3) is applied. (a) Write (t), the external force, as a piecewise function and sketch its graph b) Write the initial-value problem (c)Solve...

  • plz print your result -1 points МУ Not A mass weighing 3V 10 N stretches a spring 2 m. The mass is attached to a dashpot device that offers a damping force numerically equal to β (B > 0) times the...

    plz print your result -1 points МУ Not A mass weighing 3V 10 N stretches a spring 2 m. The mass is attached to a dashpot device that offers a damping force numerically equal to β (B > 0) times the instantaneous velocity Determine the values of the damping constant B so that the subsequent motion is overdamped, critically damped, and underdamped. (If an answer is an interval, use interval notation. Use g 9.8 m/s2 for the acceleration due to...

  • A damped osillator has a mass (m = 2.00kg), a spring (k = 10.0N/m), and a...

    A damped osillator has a mass (m = 2.00kg), a spring (k = 10.0N/m), and a damping coefficient b = 0.102kg/s. undamped angular frequency of the system is 2.24rad/s. If the initial amplitude is 0.250m, How many periods of motion are necessary for the amplitude to be reduced to 3/4 it initial value? is this system underdamped, critically damped, or overdamped

  • (d) A 4-kg mass is suspended from a spring with a constant k 25, and a dashpot with various level...

    (d) A 4-kg mass is suspended from a spring with a constant k 25, and a dashpot with various levels of damping viscosity is present. The mass is displaced 0.5 m from its equilibrium and released. Determine the displacement y(t) of the mass if (i) c-15 i) c20, (iii) c-25, and (iv) c 30 In each case, state whether the system is overdamped, critically damped, or underdamped, and sketch the solution curve. (d) A 4-kg mass is suspended from a...

  • A spring-mass-dashpot system for the motion of a block of mass m kg is shown in...

    A spring-mass-dashpot system for the motion of a block of mass m kg is shown in Fig. II-2. The block is moved to the right of the equilibrium position and is released from rest (time t = 0) when its displacement, x = XO. Using the notations given in Fig. II-2,4 (1) Draw the free body diagram of the block - (2) Write the equation of motion of the block- If the initial displacement of the block to the right...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT