Question

The following signal's zero-point is at 2: x[n] = {1, 0, −1, 2, 3} The discrete-time...

The following signal's zero-point is at 2:

x[n] = {1, 0, −1, 2, 3}

The discrete-time Fourier Transform is expressed as X(ejw) = Xr(ejw)+jXi(ejw). Find the signal with Fourier Transform Xi(ejw) + Xr(ejw)ej2w

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The signal is x[n] is defined as

x[n]=\left \{ 1,0,-1,2,3 \right \}

The DTFT of any signal x[n] is defined as:

X(e^{j\omega })=\sum_{n=-\infty }^{\infty}x[n]e^{-j\omega n}

Since the sample at n=0 is 2, the DTFT can be obtained as

X(e^{j\omega })=\sum_{n=-3 }^{1}x[n]e^{-j\omega n}=1e^{3j\omega}+0e^{2j\omega}-1e^{j\omega}+2+3e^{-j\omega}

X(e^{j\omega })=cos(3\omega)+jsin(3\omega)-cos(\omega)-jsin(\omega)+2+3cos(\omega)-j3sin(\omega)

Hence the real part of the DTFT of x[n] is obtained as:

X_{r}(e^{j\omega })=cos(3\omega)+2cos(\omega)+2

And the imaginary part of the DTFT of x[n] is obtained as:

X_{i}(e^{j\omega })=sin(3\omega)-4sin(\omega)

From the real and imaginary parts of DTFT of x[n], the DTFT of the new sequence is obtained as:

X_{i}(e^{j\omega })+X_{r}(e^{j\omega })e^{j2\omega }=\left (sin(3\omega)-4sin(\omega) \right )+\left (cos(3\omega)+2cos(\omega)+2 \right )e^{j2\omega }

X_{i}(e^{j\omega })+X_{r}(e^{j\omega })e^{j2\omega }=\left (\frac{e^{3j\omega}-e^{-3j\omega}}{2j}-4\frac{e^{j\omega}-e^{-j\omega}}{2j} \right )+\left (\frac{e^{3j\omega}+e^{-3j\omega}}{2}+2\frac{e^{j\omega}+e^{-j\omega}}{2}+2 \right )e^{j2\omega }

X_{i}(e^{j\omega })+X_{r}(e^{j\omega })e^{j2\omega }=\left (\frac{e^{3j\omega}-e^{-3j\omega}}{2j}-4\frac{e^{j\omega}-e^{-j\omega}}{2j} \right )+\left (\frac{e^{5j\omega}+e^{-j\omega}}{2}+2\frac{e^{3j\omega}+e^{j\omega}}{2}+2 \right )

X_{i}(e^{j\omega })+X_{r}(e^{j\omega })e^{j2\omega }=\sum_{n=-\infty }^{\infty}x_{1}[n]e^{-j\omega n}=\left (\frac{e^{3j\omega}-e^{-3j\omega}}{2j}-4\frac{e^{j\omega}-e^{-j\omega}}{2j} \right )+\left (\frac{e^{5j\omega}+e^{-j\omega}}{2}+2\frac{e^{3j\omega}+e^{j\omega}}{2}+2e^{j2\omega } \right )

X_{i}(e^{j\omega })+X_{r}(e^{j\omega })e^{j2\omega }=\sum_{n=-\infty }^{\infty}x_{1}[n]e^{-j\omega n}=\frac{e^{5j\omega}}{2}+e^{3j\omega}\left \{ 1+\frac{1}{2j} \right \}+2e^{2j\omega}+e^{j\omega}\left \{ 1-\frac{2}{j} \right \}+e^{-j\omega}\left \{ \frac{1}{2}+\frac{2}{j} \right \}

From the above equation, by comparing coefficients, the desired new sequence x1[n] can be obtained as follows:

x_{1}[n]=\left \{ \frac{1}{2},0, 1+\frac{1}{2j},2,1-\frac{2}{j},0,\frac{1}{2}+\frac{2}{j} \right \}

The second zero coming in the sequence x1[n] is the sample that corresponds to n=0.

Add a comment
Know the answer?
Add Answer to:
The following signal's zero-point is at 2: x[n] = {1, 0, −1, 2, 3} The discrete-time...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT