Question

A 4-kW pump operating at steady state draws in liquid water at 100 kPa, 15?C with...

A 4-kW pump operating at steady state draws in liquid water at 100 kPa, 15?C with a mass flow rate of 4.5 kg/s and delivers water at 1 MPa pressure. Ignore the kinetic and potential energy changes from inlet to exit. Determine (a) the isentropic efficiency of the pump and (b) whether the power input rating is adequate

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Theoouicol pecoe coo 4.OS 151 cohich canpol be true tAda The liven feceree hug Should be reate i

Add a comment
Know the answer?
Add Answer to:
A 4-kW pump operating at steady state draws in liquid water at 100 kPa, 15?C with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem #1: A 4.5 kW pump operating at steady state draws in liquid water at 1...

    Problem #1: A 4.5 kW pump operating at steady state draws in liquid water at 1 bar, 15 °C and delivers the water at 5 bar to a location whose elevation is 6 m above that of the inlet. There is no significant change in velocity between the inlet and exit, and the local acceleration of gravity is 9.8 m/s? Would it be possible to pump 5.5 m in 10 min or less? Explain. (25 pts)

  • 3_12: A pump operating at steady state draws in 60 kg of liquid water per second...

    3_12: A pump operating at steady state draws in 60 kg of liquid water per second at 1 bar, 15 °C and delivers the water to a location whose elevation is 10 m above that of the inlet. The exit pressure is 4 bar and the temperature remains constant. The inlet has a diameter of 20 cm and the exit has a diameter of 10 cm. The pump operates adiabatic and experiences no internal irreversibility. If pumps are sold in...

  • Liquid water at 120 kPa enters a 7 kW pump where its pressure is raised to...

    Liquid water at 120 kPa enters a 7 kW pump where its pressure is raised to 4.7 MPa. If the elevation difference between the exit and the inlet levels is 10 m, determine the highest mass flow rate of liquid water this pump can handle. Neglect the kinetic energy change of water, and take the specific volume of water to be 0.001 m3/kg The highest mass flow rate of liquid water is kg/s

  • Problem 4. Water vapor at 6 MPa, 600 °C enters a turbine operating at steady state...

    Problem 4. Water vapor at 6 MPa, 600 °C enters a turbine operating at steady state and expands to 10 kPa. The mass flow rate is 2 kg/s, and the power developed is 2626 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Determine (a) the isentropic turbine efficiency and (b) the rate of entropy production within the turbine in kw/K.

  • Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature...

    Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature of 290 K, and with a mass flow rate of 0.72 kg/s. At the exit, the pressure is 700 kPa and the temperature is 450 K. Heat transfer from the compressor to its surroundings occurs at a rate of 3 kW. Kinetic and potential energy changes can be ignored. Determine the power input to the compressor, in kW. Assume that the air is an...

  • Answer: 14.8 kW, Explain? Liquid water is to be compressed by a pump whose isentropic efficiency...

    Answer: 14.8 kW, Explain? Liquid water is to be compressed by a pump whose isentropic efficiency is 81 percent from 0.2 MPa to 5 MPa at a rate of 0.15 m3/min. What is the required power input to this pump? Solve using appropriate software. Multiple Choice 12.0 kW 14.8 kW 8.5 kW 15.3 kW 10.2 kW

  • Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands...

    Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow rate is 6.52 kg/s, and the isentropic turbine efficiency is 92%. Stray heat and kinetic and potential energy effects are negligible. Determine the power developed by the turbine in kW. ht 6/3 of En Help I S Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow...

  • A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa...

    A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa and the condenser at 40 kPa. At the entrance to the turbine, the temperature is 380 °C. The isentropic efficiency of the turbine is 88 %, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 5.9 °C. The boiler is sized for a mass flow rate of 17 kg/s. Determine the following values. °C m®/kg 1 kJ/kg (1)...

  • An air compressor is operating at a steady state with a mass flow rate of 1.3...

    An air compressor is operating at a steady state with a mass flow rate of 1.3 kg/s. The inlet pressure and temperature are P1 171 kPa and T1 319 K, respectively. The exit pressure and temperature are P2 609 kPa and T2 428 K. respectively. Heat lost from the compressor to the surroundings per unit mass flow is 16 kJ/kg. Air can be assumed as an ideal gas. Kinetic and potential energy changes can be neglected. what is the required...

  • Steady-state operating data for a simple steam power plant are provided in figure. Kinetic and potential...

    Steady-state operating data for a simple steam power plant are provided in figure. Kinetic and potential energy effects can be ignored. Determine the a) the mass flow rate of the steam, (10 pts.) b) Qin . (5 pts.) c) the mass flow rate of the cooling water, (5 pts.) d) thermal efficiency, (5 pts.) e) What happens to the thermal efficiency if we increase the turbine inlet pressure while keeping the inlet temperature (TI) constant? Explain it clearly. (10 pts.)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT