Question

1. An Atwood Machine consists of weights attached to the two ends of a pulley. For this machine, the pulley is a thin disk wh

0 0
Add a comment Improve this question Transcribed image text
Answer #1

here,

the radius of pulley , r = 2 m

m1 = 8 kg

m2 = 5 kg

s = 5 m

the acceleration of system , a = net force /effective mass

a = ( m1 - m2) * g /(m1 + m2)

a = ( 8 - 5) * 9.81 /(8 + 5) m/s^2

a = 2.26 m/s^2

a)

the speed of first mass , v1 = sqrt(2*a * s)

v1 = sqrt(2 * 2.26 * 5) m/s = 4.76 m/s

b)

the speed of blocks is same

the speed of mass 2 is 4.76 m/s

c)

the angular velocity of the pulley , w = v/r

w = 4.76 /2 rad/s = 2.38 rad/s

d)

the angle covered , theta = s /r

theta = 5 /2 rad = 2.5 rad= 143.3 degree

Add a comment
Know the answer?
Add Answer to:
1. An Atwood Machine consists of weights attached to the two ends of a pulley. For...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp=6.33 kg and radius rp=0.250 m. The hanging masses are mL=21.1 kg and mR=14.1 kg.Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, TL and TR , respectively.

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass m = 4.53 kg and radius r = 0.450 m. The hanging masses are mu = 20.5 kg and mr = 12.7 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, T, and Tr, respectively. mi m/s2 TL...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp = 5.13 kg and radius rp = 0.250 m. The hanging masses are mı = 19.7 kg and mr = 11.7 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, Ti, and TR respectively. my m/s2 N...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass m, = 5.53 kg and radius rp = 0.150 m. The hanging masses are m = 17.1 kg and mp = 12.1 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, T and Tr, respectively. m m/s2 a...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp = 5.13 kg and radius rp = 0.250 m. The hanging masses are mu = 19.7 kg and mr = 11.7 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, T. and Tr , respectively. mu a=...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass m = 5.13 kg and radius rp = 0.350 m. The hanging masses are m. = 19.7 kg and mx = 13.3 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, Ti, and Tr, respectively. mL m/s2 a...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp = 6.13 kg and radius rp = 0.150 m. The hanging masses are mL = 21.1 kg and mR = 10.3 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, Ti and TR, respectively. m "L a=...

  • An Atwood machine consists of two masses ?1 and ?2 (with ?1 > ?2) attached to...

    An Atwood machine consists of two masses ?1 and ?2 (with ?1 > ?2) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass ?1 is easily shown to accelerate down with an acceleration ? = ? ((?1 − ?2) / ( ?1 + ?2)). Suppose that ?1 and ?2 are measured as ?1 = 100 ± 1 ???? and ?2 = 50 ± 1 ????. Derive a...

  • An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light

    An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass m1 is easily shown to accelerate down with an accelerationSuppose that m1 and m2 are measured as m1=100±1 gram and m2=50±1 gram. Derive a formula of the uncertainty in the expected acceleration in terms of the masses and their uncertainties, and then calculate δα for...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley Assume that the rope and pulley are massless, and that there is no friction in the pulley. If the masses have the values m 19.7 kg and m2 12.7 kg, find the magnitude of their acceleration a and the tension T in the rope. Use g 9.81 m/s2. Number a- m/s Number

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT