Question

QUESTION 6 Which of the following materials is likely to have a stress strain curve as shown below? b 500 MPa 400 MPa 250 MPa

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
QUESTION 6 Which of the following materials is likely to have a stress strain curve as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • (30 points) From the stress-strain chart for a unknown material determine thoe following 400 a) The...

    (30 points) From the stress-strain chart for a unknown material determine thoe following 400 a) The modulus of elasticity b) The yield strength at a strain offset of 0.002 c) Tensile strength d) The Ductility (percentage of 300 200 elongation, %EL) e) The Modulus of resilience f) Strain at 350 Mpa stress g) Strain at 150 Mpa stress 200 100 100 0.005 0.30 0.40 0.10 trein 0.20

  • Figure 2.1 shows the stress strain curves for three materials. For these materials answer the fol...

    Figure 2.1 shows the stress strain curves for three materials. For these materials answer the following questions, giving reasons for your selection a) Which material has the highest elastic modulus? b) Which material has the highest ductility? c) Which material has the highest toughness? d) Which material has the highest yield strength? e) Which material has the highest ultimate tensile strength? f State respectively which material behaves like a: i. Metal ii. Polymer iii. Ceramic Figure 2.1 (NB. The points...

  • 1.Below are stress-strain curves for 5 steels. (a) annealed low carbon steel, (b) a steel alloy...

    1.Below are stress-strain curves for 5 steels. (a) annealed low carbon steel, (b) a steel alloy which has a DBTT of +50°C (c) 304 stainless steel (d) nearly pure coarse grained Fe Identify the modulus, yield stress, tensile strength, ductility, and toughness. Identify the amount of elastic strain at yield stress, tensile strength, point right before fracture, point right after fracture. 2000 -Low C steel, 1800 steel alloy, DBTT +50C 304 stainless pure Fe 1600 1400 1200 t 1000 800...

  • please solve 5.21.08 3. In your lab experiment 2, a stress-strain curve of hot rolled steel...

    please solve 5.21.08 3. In your lab experiment 2, a stress-strain curve of hot rolled steel 1020 is shown in the figure, Determine the follwing: Steel 1020 (Hot Roled Steel ASTM A35) a. The elastic modulus 5 min b. Upper and lower yield strengths 6.E+08 4.53E08 c. Ultimate tensile strength 5.E+08 d. Ductility (Elongation percent) & 4E+08 e. Modulus of resilence 3.E+08 2.E+08 1.E+08 0.E+00 0 0.05 0.1 0.15 0.2 0.25 3.74E-08 0.3 Strain Steel 1020 (Hot Rolled Steel ASTM-A36)...

  • 5. EVALUATION I. Create a stress-strain diagram for the measured values in table 1 and identify...

    5. EVALUATION I. Create a stress-strain diagram for the measured values in table 1 and identify the mechanical properties of the material. (4 marks) II. Identify the following and label them in the graph. (12 marks) • Young's modulus Yield strength Elongation Ultimate tensile strength THEORETICAL BACKGROUND Equations: Cross-sectional Area (A) Modulus of Elasticity (E) Tensile Strength (ST) Percent Elongation (%EL) d? E = Sy Ey Sr Pu А %EL Extension at fracture Gauge Length Where: A: Cross- Sectional Area...

  • References Tensile strength 450 MPa (65,000 psi) Strain = 0 Stress = 0 MPA Stress =...

    References Tensile strength 450 MPa (65,000 psi) Strain = 0 Stress = 0 MPA Stress = 0 psi 500 1 Strain = 0 Stress = 0 MPA Stress = 0 psi 103 psi 40 MPa 300 Yield strength 250 MPa (36,000 psi) 200 - 30 Stress (MPa) 2001 Stress (10 psi) 100% okuloobs 0.10 0.20 0.30 Strain References Brinell hardness number = 0 BHN Rockwell hardness = ... Rockwell hardness Tensile strength = 0 MPA Tensile strength = 0 ksi...

  • The graph below shows the stress vs. strain curves for thredifferent materials(A, 8, & c) obtaine...

    The graph below shows the stress vs. strain curves for thredifferent materials(A, 8, & c) obtained from a tensile test 3001 A 275 250 225 200 175 150 125 100 75 50 x-Break 25 0.00 0.01 002 0.03 004 005 0.06 007 0.08 0.09 0.10 Strain Using the curves above: a) Estimate the Young's Modulus for materials A, B, and C b) Estimate the yield strength and tensile strength (if any) of materials A, B, and C c) Using what...

  • Assignment 01 TOT Mechanical Properties of Materials 1. A tensile test specimen has a gage length...

    Assignment 01 TOT Mechanical Properties of Materials 1. A tensile test specimen has a gage length = 50 mm and its cross-sectional area = 100 mm. The specimen yields at 48,000 N, and the corresponding gage length - 50.23 mm. This is the 0.2 ent yield point. The maximum load of 87,000 N is reached at a gage length 64.2 mm. Determine (a) yield strength, (b) modulus of elasticity, and (c) tensile strength. (d) If fracture occurs at a gage...

  • Given the following data from a tensile test. Show your calculations for the following: Tensile Stress...

    Given the following data from a tensile test. Show your calculations for the following: Tensile Stress Modulus of Elasticity (Young’s Modulus) Yield Strength Percentage of elongation Percentage of reduction in area The following data were collected from a 12-mm-diameter test specimen of magnesium (l. = 30.00 mm): 250 Vielding 0.2% offset Load (N) 0 5,000 10,000 15,000 20,000 25,000 26,500 27,000 26,500 25,000 Gage Length (mm) 0.0000 0.0296 0.0592 0.0888 0.15 0.51 0.90 1.50 (maximum load) 2.10 Stress (MPa) oro...

  • Stress-strain curve represents the result of 6" x 12" concrete cylinders tested in compression. From the...

    Stress-strain curve represents the result of 6" x 12" concrete cylinders tested in compression. From the results determine, • The approximate load causing the specified strength of the concrete • The tensile strength of the concrete per ACI 318-14 • The modulus of elasticity of concrete, based on: a. The appropriate ACI 318-14 expression b. the ACI 318-14's Secant approach 6 5 4 Stress, ksi 3 1 O 0.001 0.003 0.004 0.002 Strain

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT