Question

3. Sketch the first four harmonic waves for a) a vibrating string b) a vibrating air column. The tube is open at one end, clo
0 0
Add a comment Improve this question Transcribed image text
Answer #1


The first harmonic of a wave is the lowest possible frequency

Therefore,

A) First harmonic for a string looks like-

ist Harmonic at 1/2

Therefore 4 harmonic waves on a string can be sketched as

4 Haunianic waves

B) In case of a 1 side closed organ pipe, first harmonic looks like

1st Hatemonic at ta

Therefore 4 harmonic waves in a closed organ pipe can be sketched as

Hawnionic waves.

Add a comment
Know the answer?
Add Answer to:
3. Sketch the first four harmonic waves for a) a vibrating string b) a vibrating air...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Pre-Lab for LAB#11 Waves in air may be represented by oscillations of air molecules or of...

    Pre-Lab for LAB#11 Waves in air may be represented by oscillations of air molecules or of air pressure. When representing standing waves in air, displacement nodes correspond to pressure antinodes (places of greatest pressure variation), and displacement antinodes correspond to pressure nodes (places of least pressure variation). Problem Consider a pipe that is closed at one end. Sketch the standing wave pattern in each of the following situations to show the regions of greatest and least air pressure variations (pressure...

  • chp. 12 #20 A string, 0.13 m long, vibrating in the n = 4 harmonic, excites...

    chp. 12 #20 A string, 0.13 m long, vibrating in the n = 4 harmonic, excites an open pipe, 0.88 m long, into second overtone resonance. The speed of sound in air is 345 m/s. The velocity of transverse waves in the string, in SI units, is closest to: 34 32 36 30 38

  • A string with both ends held fixed is vibrating in its third harmonic. The waves have...

    A string with both ends held fixed is vibrating in its third harmonic. The waves have a speed of 194 m/s and a frequency of 225 Hz . The amplitude of the standing wave at an antinode is 0.390 cm . A. Calculate the maximum transverse velocity of the string at this point. B. Calculate the maximum transverse acceleration of the string at this point.

  • Number 5 (a) ine weight of the string is 0.096 lb. What tension must the string...

    Number 5 (a) ine weight of the string is 0.096 lb. What tension must the string be under (weights are attached to the other end) il it is to vibrate in four loops? (b) hat would happen if the tuning fork is turned ao as to vibrate parallel to the length of the string? The water lcvcl in a vertical glass tube 1.0 meter long can be adjusted to any osition in the tube. A tuning fork vibrating at 660...

  • 2.) The 2nd harmonic of a violin string with a length of 32 cm (between the fixed ends) and density of 0.15 kg/m resonates with the third harmonic of a 2.0-m long organ pipe with one end closed an...

    2.) The 2nd harmonic of a violin string with a length of 32 cm (between the fixed ends) and density of 0.15 kg/m resonates with the third harmonic of a 2.0-m long organ pipe with one end closed and the other end open. (a) Draw a diagram for the problem, labelling the known and unknown variables. In your diagram, e standing waves for both the violin string and the organ pipe. For the organ pipe, graph the standing wave in...

  • Need help with 1-A, 1-B, 1-C with step-by-steps. 1.) Standing Waves a.) A guitar string fixed...

    Need help with 1-A, 1-B, 1-C with step-by-steps. 1.) Standing Waves a.) A guitar string fixed at both ends has length 63.5 cm and mass 1.41 g. Tension 205 N is applied to the string. Calculate the speed of the waves traveling along the string and the frequency of the third harmonic (n = 3). How many nodes (including the ends) does the string contain when it supports the fifth harmonic (n = 5)? b.) A 65.0 cm long tube...

  • 5) One of the harmonics of a column of air in a tube has a frequency...

    5) One of the harmonics of a column of air in a tube has a frequency of 576 Hz, and the next higher harmonic has a frequency of 704 Hz. What kind of tube is it - namely, is it open at both ends or open at one end and closed at the other end? How long is the tube? The speed of sound in air is 343 m/s. (SHOW YOUR WORK)

  • Problem 3: Vibrating string The string is fixed at two ends with distance 1.5m. Its mass...

    Problem 3: Vibrating string The string is fixed at two ends with distance 1.5m. Its mass is 5g and the tension in the string is 50N and it vibrates on its third harmonic. a) What is the wavelength of waves of the string b) What is the frequency of the waves. c) The vibrations produce the sound with the same frequency. What is the wavelength of the sound emitted by the string?

  • A string 3.30 m long and fixed at both ends is vibrating in its third harmonic....

    A string 3.30 m long and fixed at both ends is vibrating in its third harmonic. The maximum displacement of any point on the string is 4.00 mm. The speed of transverse waves on this string is 59.5 m/s. (a) What are the wavelength and frequency of this standing wave? wavelength m frequency Hz (b) Write the wave function for this standing wave.

  • Problem 3: Vibrating string A thin 2m long string with mass 3g is stretched with a...

    Problem 3: Vibrating string A thin 2m long string with mass 3g is stretched with a tension 90N between two ends. When it vibrates with the third harmonic the amplitude of the string at an antinode A of the standing wave on the string has an amplitude of 5 cm a) What is the speed of propagation of waves in the string? b) What is the maximum transverse speed of this point A on a string? c) What is the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT