Question

1) A calorimeter contains 28.0 mL of water at 11.5 ?C . When 2.20 g of...

1) A calorimeter contains 28.0 mL of water at 11.5 ?C . When 2.20 g of X (a substance with a molar mass of 51.0 g/mol ) is added, it dissolves via the reaction

X(s)+H2O(l)?X(aq)

and the temperature of the solution increases to 30.0 ?C .

Calculate the enthalpy change, ?H, for this reaction per mole of X.

Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g??C)], that density of water is 1.00 g/mL, and that no heat is lost to the calorimeter itself, nor to the surroundings.

2)

Consider the reaction

C12H22O11(s)+12O2(g)?12CO2(g)+11H2O(l)

in which 10.0 g of sucrose, C12H22O11, was burned in a bomb calorimeter with a heat capacity of 7.50 kJ/?C. The temperature increase inside the calorimeter was found to be 22.0 ?C. Calculate the change in internal energy, ?E, for this reaction per mole of sucrose.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1.

Heat change = mass * specifc heat * change in temperature

q = (28.0 + 2.20) * 4.18 * (30.0 - 11.5)

q = 2335.4 J

Moles of X = mass / molar mass = 2.20 / 51.0 = 0.0431 mol

deltaHsol = - q / n = - 2335.4 / 0.0431 = - 54139 J / mol = - 54.1 kJ/mol

2.

q = Ccal * chang in temperature

q = 7.50 * 22.0

q = 165. kJ

Moles of sucrose = mass / molar mass = 10.0 / 342 = 0.0293 mol

deltaErxn = - q / n = - 165 / 0.0293 = - 5643 kJ/mol

Add a comment
Know the answer?
Add Answer to:
1) A calorimeter contains 28.0 mL of water at 11.5 ?C . When 2.20 g of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Part A: A calorimeter contains 26.0 mL of water at 13.0 ∘C . When 2.10 g...

    Part A: A calorimeter contains 26.0 mL of water at 13.0 ∘C . When 2.10 g of X (a substance with a molar mass of 49.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 25.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...

  • Part A A calorimeter contains 34.0 mL of water at 12.5 ∘C . When 1.50 g...

    Part A A calorimeter contains 34.0 mL of water at 12.5 ∘C . When 1.50 g of X (a substance with a molar mass of 75.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 25.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...

  • Consider the reaction C12H22O11(s)+12O2(g)→12CO2(g)+11H2O(l) in which 10.0 g of sucrose, C12H22O11, was burned in a bomb...

    Consider the reaction C12H22O11(s)+12O2(g)→12CO2(g)+11H2O(l) in which 10.0 g of sucrose, C12H22O11, was burned in a bomb calorimeter with a heat capacity of 7.50 kJ/∘C. The temperature increase inside the calorimeter was found to be 22.0 ∘C. Calculate the change in internal energy, ΔE, for this reaction per mole of sucrose. Express the change in internal energy in kilojoules per mole to three significant figures.

  • 1a) Consider the reaction: C12H22O11(s)+12O2(g)→12CO2(g)+11H2O(l) in which 10.0 g of sucrose, C12H22O11, was burned in a...

    1a) Consider the reaction: C12H22O11(s)+12O2(g)→12CO2(g)+11H2O(l) in which 10.0 g of sucrose, C12H22O11, was burned in a bomb calorimeter with a heat capacity of 7.50 kJ/∘C. The temperature increase inside the calorimeter was found to be 22.0 ∘C. What is the heat of this reaction per mole of sucrose? 1b) One tablespoon of peanut butter has a mass of 17.0 g. It is combusted in a calorimeter whose heat capacity is 110 kJ/°C. The temperature of the calorimeter rises from 21.6...

  • A calorimeter contains 26.0 mL of water at 13.5 ∘C . When 2.50 g of X...

    A calorimeter contains 26.0 mL of water at 13.5 ∘C . When 2.50 g of X (a substance with a molar mass of 51.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • A calorimeter contains 19.0 mL of water at 11.5 ∘C . When 2.50 g of X...

    A calorimeter contains 19.0 mL of water at 11.5 ∘C . When 2.50 g of X (a substance with a molar mass of 63.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • Review Co Part A A calorimeter contains 300 ml. of water at 135 C When 2.10...

    Review Co Part A A calorimeter contains 300 ml. of water at 135 C When 2.10 g of X (a substance with a molar mass of 450 g/mol) is added, it dissolves via the reaction X(s) + H20(1)-+X(aq) and the temperature of the solution increases to 275 °C Calculate the enthalpy change. AH for this reaction per mole of X Assume that the specific heat of the resulting solution is equal to that of water [4.18 /(C) that density of...

  • part a. The air in an inflated balloon (defined as the system) is warmed over a toaster and absorbs 110 J of heat. As it...

    part a. The air in an inflated balloon (defined as the system) is warmed over a toaster and absorbs 110 J of heat. As it expands, it does 79 kJ of work. What is the change in internal energy for the system? Express the energy in kilojoules to two significant figures. part b. When fuel is burned in a cylinder equipped with a piston, the volume expands from 0.235 L to 1.350 L against an external pressure of 1.02 atm...

  • A calorimeter contains 35.0 mL of water at 12.0 ∘C . When 2.30 g of X...

    A calorimeter contains 35.0 mL of water at 12.0 ∘C . When 2.30 g of X (a substance with a molar mass of 70.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • A calorimeter contains 27.0 mL of water at 14.0 ∘C . When 2.00 g of X...

    A calorimeter contains 27.0 mL of water at 14.0 ∘C . When 2.00 g of X (a substance with a molar mass of 77.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 26.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT