Question

(0.0, 0.0, 1.5)m S2 (top) S. (back) (1.0, 0.0, 0.0)m - Sg (right side) S5 (front) S. (bottom) (0.0, 2.0, 0.0)m Figure 3: 3. T

0 0
Add a comment Improve this question Transcribed image text
Answer #1

height of the rectangle ( along Z-axis ) ,h = 1.5 m and,

width of the rectangle ( along X-axis ) ,w = 1 m

length of the rectangle ( along Y-axis ) ,L = 2.0 m

and current through any surface is given as,

=I, _______________________________relation 1

where,

\vec{J}.\vec{ds} is infinitesimal current flowing through the infinetesimal area \vec{ds} .

a)

Area vector \vec{A} of a plane surface of area A   is given as,

A = An ___________________________________________relation 2

Where,

\hat{n}= unit vector normal to the plane containing area A .

we can choose vector \hat{n} pointing on either side of the surface,

but in our case we need to choose the normal unit vectors \hat{n} of surfaces of rectangle which are pointing outward the cube or inward the cube .

looking at options of this question the former convention ( unit vectors pointing outward the rectangle ) has been fallowed,

Otherwise if we choose unit vectors of surfaces otherwise, we need to be extra careful and aware about signs eachtime while doing calculations which becomes an extra and unessesory task.

we have,

length of surface S_{3}=   h = 1.5 m

width of surface  S_{3}=  w = 1 m

area A_{ 3}   of surface   S_{3}=h.w = 1.5 x1 = 1.5 m2

Unit vector normal to the surface S_{3}=   \hat{n}_{3}  =  \hat{j}

so as per relation 2 the surface vector \vec{S}_{3} of surface S_{3}   will be given as,

S3 = Az n3 = 1.5

Similarly,

area A_{ 1} of surface S_{1}= area A_{ 3} of surface S_{3} ,

A1 = 43 = 1.5 m and,

unit vector perpendicular to surface S_{1} = - =

so as per relation 2 the surface vector \vec{S}_{1} of surface S_{1}   will be given as,

S3 = Aj ñ = -1.5

So the answer is,

ii) + (1.5 m²) j, -(1.5 m2)

b)

Answer - False

the calculations after the fallowing step are wrong,

-2.0 y dx dz|y=20mA/m

correct calculations are,

-2.0 y do dzy=2.0 mA/m2 = -4.0 do dz +

p=1.5 pe=1 p=1.5 I = (-4.0 dc dz) = / -4.0[2]. dz = T=0 SO

p=1.5 -4.0 dz = -4.0[211.5 = -4.0 x 1.5 = -6.0 A A=0

everything else is correct and true.

c)

from part b we have currents through surfaces S_{3} and S_{1} of the rectangle,

current I_{1} flowing through surface S_{1} =0.

current I_{3} flowing through surface S_{3}   = -6

now we need to calculate currents through remaining surfaces,

Using relation 1 current I_{2} flowing through surface S_{2} will be given as,

I_{2}=\int_{S_{2}}\vec{J}.\vec{ds}|_{z=1.5\:m}

I_{2}=\int_{S_{2}}(2x\:\hat{i}-2y\:\hat{j}+xy\:\hat{k}).(dx\:dy)\:\hat{k}|_{z=1.5\:m}

12 = 1 | ry de dyl:=1.5 m Jo Jo

I_{2}=\int_{0}^{2} y\left[\frac{x^{2}}{2} \right ]_{0}^{1}\:dy=\int_{0}^{2} y\left[\frac{1}{2} \right ]\:dy

I_{2}=\frac{1}{2} \left[ \frac{y^{2}}{2}\right ]_{0}^{2}\:dy

I_{2}=\frac{1}{2} \left[ \frac{4}{2}\right ]\:dy

I_{2}=1\:A

Similarly,

Using relation 1 current I_{4} flowing through surface S_{4} will be given as,

I_{4}=\int_{S_{4}}\vec{J}.\vec{ds}|_{z=0\:m}

I_{4}=\int_{S_{4}}(2x\:\hat{i}-2y\:\hat{j}+xy\:\hat{k}).(-dx\:dy)\:\hat{k}|_{z=0\:m}

14 = - 1 my dr dyl:=0 m Jo Jo

I_{4}=-\int_{0}^{2} y\left[\frac{x^{2}}{2} \right ]_{0}^{1}\:dy=-\int_{0}^{2} y\left[\frac{1}{2} \right ]\:dy

I_{4}=-\frac{1}{2} \left[ \frac{y^{2}}{2}\right ]_{0}^{2}\:dy

I_{4}=-\frac{1}{2} \left[ \frac{4}{2}\right ]\:dy

14 = -14

Similarly,

Using relation 1 current I_{5} flowing through surface S_{5} will be given as,

I_{5}=\int_{S_{5}}\vec{J}.\vec{ds}|_{x=1\:m}

I_{5}=\int_{S_{5}}(2x\:\hat{i}-2y\:\hat{j}+xy\:\hat{k}).(dy\:dz)\:\hat{i}|_{x=1\:m}

I_{5}=\int_{0}^{1.5}\int_{0}^{2} 2x\:dy\:dz|_{x=1\:m}

I_{5}=\int_{0}^{1.5}\int_{0}^{2} 2(1)\:dy\:dz

I_{5}=\int_{0}^{1.5} 2\left[y \right]_{0}^{2}\:dz=\int_{0}^{1.5}4\:dz

15 = 4 [211.5

I_{5}=4(1.5)

I_{5}=6\:A

Similarly,

Using relation 1 current I_{6} flowing through surface S_{6} will be given as,

I_{6}=\int_{S_{6}}\vec{J}.\vec{ds}|_{x=0\:m}

I_{6}=\int_{S_{6}}(2x\:\hat{i}-2y\:\hat{j}+xy\:\hat{k}).(dy\:dz)\:\hat{i}|_{x=0\:m}

I_{6}=\int_{0}^{1.5}\int_{0}^{2} 2x\:dy\:dz|_{x=0\:m}

I_{6}=\int_{0}^{1.5}\int_{0}^{2} 2(0)\:dy\:dz

I_{5}=0\:A

So,

net current I flowing through all the surfaces is given as,

I=I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}

I=(0)+(1)+(-6)+(-1)+(6)+(0)

I=0\:A

so answer is,

(ii)0.0\:A

Add a comment
Know the answer?
Add Answer to:
(0.0, 0.0, 1.5)m S2 (top) S. (back) (1.0, 0.0, 0.0)m - Sg (right side) S5 (front)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT