Question

3. Consider the following reaction where Kc 1.18 at 150K: 2HI(E)H2(g)+ 12(s) A reaction mixture was found to contain 0.0381 m

show work please

At equilibrium a 1.0-liter container was found to contain 0.20 mol of A, 0.20 mol of B, 0.40 mol of C, and 0.40 mol of D. If

0 0
Add a comment Improve this question Transcribed image text
Answer #1

3) kc 1.18 o o38 1) in not to k, so t as ctren must meve in

Add a comment
Know the answer?
Add Answer to:
show work please 3. Consider the following reaction where Kc 1.18 at 150K: 2HI(E)H2(g)+ 12(s) A...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the following reaction where Kc = 55.6 at 698 K:   H2(g) + I2(g) --- 2HI(g)  ...

    Consider the following reaction where Kc = 55.6 at 698 K:   H2(g) + I2(g) --- 2HI(g)   A reaction mixture was found to contain 2.56×10-2 moles of H2(g), 3.71×10-2 moles of I2(g) and 0.257 moles of HI(g), in a 1.00 Liter container. Indicate True (T) or False (F) for each of the following: ___TF 1. In order to reach equilibrium HI(g) must be produced. ___TF 2. In order to reach equilibrium Kc must increase. ___TF 3. In order to reach equilibrium...

  • Consider the following reaction where Kc = 55.6 at 698 K: H2(g) + I2(g) <------>2HI(g) A...

    Consider the following reaction where Kc = 55.6 at 698 K: H2(g) + I2(g) <------>2HI(g) A reaction mixture was found to contain 4.14×10-2 moles of H2(g), 3.91×10-2 moles of I2(g) and 0.258 moles of HI(g), in a 1.00 Liter container. Indicate True (T) or False (F)for each of the following: ___TF 1. In order to reach equilibrium HI(g) must be consumed. ___TF 2. In order to reach equilibrium Kc must decrease. ___TF 3. In order to reach equilibrium H2 must...

  • Consider the following reaction where K, 55.6 at 698 K: H2(8) +12(8) 2HI(g) A reaction mixture...

    Consider the following reaction where K, 55.6 at 698 K: H2(8) +12(8) 2HI(g) A reaction mixture was found to contain 4.76x102 moles of H2(8), 3.98x102 moles of I(8) and 0.295 moles of HI(g), in a 1.00 Liter container Indicate True (T) or False (E) for each of the following: 1. In order to reach equilibrium HI(g) must be produced 2. In order to reach equilibrium Kmust decrease 3. In order to reach equilibrium Hy must be consumed 4., is greater...

  • Consider the following reaction: 2HI(g) =H2(g) +12(9) If 1.87 moles of HI, 0.333 moles of H2,...

    Consider the following reaction: 2HI(g) =H2(g) +12(9) If 1.87 moles of HI, 0.333 moles of H2, and 0.277 moles of Iare at equilibrium in a 14.7L container at 888 K, the value of the equilibrium constant, Kp. is Submit Answer Retry Entire Group 9 more group attempts remaining

  • A student ran the following reaction in the laboratory at 673 K: H2(g) + I2(g) 2HI(g)...

    A student ran the following reaction in the laboratory at 673 K: H2(g) + I2(g) 2HI(g) When she introduced 0.228 moles of H2(g) and 0.256 moles of I2(g) into a 1.00 liter container, she found the equilibrium concentration of I2(g) to be 6.53×10-2 M. Calculate the equilibrium constant, Kc, she obtained for this reaction.

  • 1. A student ran the following reaction in the laboratory at 632 K: 2HI(g) ->H2(g) +...

    1. A student ran the following reaction in the laboratory at 632 K: 2HI(g) ->H2(g) + I2(g)   When she introduced 0.362 moles of HI(g) into a 1.00 liter container, she found the equilibrium concentration of I2(g) to be 3.55×10-2 M.   Calculate the equilibrium constant, Kc, she obtained for this reaction.   Kc = 2. A student ran the following reaction in the laboratory at 616 K: CO(g) + Cl2(g) -> COCl2(g) When she introduced 0.131 moles of CO(g) and 0.161 moles...

  • A student ran the following reaction in the laboratory at 686 K: H2(g) + I2(g) 2HI(g) When she introduced 0.200 moles of...

    A student ran the following reaction in the laboratory at 686 K: H2(g) + I2(g) 2HI(g) When she introduced 0.200 moles of H2(g) and 0.230 moles of I2(g) into a 1.00 liter container, she found the equilibrium concentration of I2(g) to be 6.18×10-2 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. Kc=?

  • Consider the chemical reaction below at a given temperature and at equilibrium: H2(g) +12(g) = 2HI(g)...

    Consider the chemical reaction below at a given temperature and at equilibrium: H2(g) +12(g) = 2HI(g) Kc = 53.3 If 0.800 mol of H2 and 0.800 mol of 12 are placed in a 1.00L container and allowed to react, what is the [HI] when the reaction reaches equilibrium? [HIN In the expression for K N- (H2] [12]' The equilibrium concentrations can be expressed as follows: NOTE: This is NOT asking for the concentrations you solve for this is literally asking...

  • A student ran the following reaction in the laboratory at 647 K: 2HI(g) H2(g) + I2(g)...

    A student ran the following reaction in the laboratory at 647 K: 2HI(g) H2(g) + I2(g) When she introduced 0.395 moles of HI(g) into a 1.00 liter container, she found the equilibrium concentration of I2(g) to be 3.95×10-2 M. Calculate the equilibrium constant, Kc, she obtained for this reaction.

  • Consider the following equilibrium with a Kc = 55.6 at a temperature of 698 K. H2(g)...

    Consider the following equilibrium with a Kc = 55.6 at a temperature of 698 K. H2(g) + I2(g) <--> 2HI(g)              ΔH0 = + 26.5 kJ / mol If the initial concentrations were [H2] = 0.12 M; [I2] = 0.041 M; and [HI] = 2.6 M. Is the system at equilibrium, and if not, in which direction must it shift to establish equilibrium? Justify your answer. At the same 698 K, 0.50 mol of H2 and 0.88 mol of I2 are...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT