Question

Physics Help

A 0.32-kg puck at rest on a horizontal frictionless surface is struck by a 0.22-kg puck moving in the positive x-direction with a speed of 7.0 m/s. After the collision, the 0.22-kg puck has a speed of 1.7 m/s at an angle of ? = 60° counterclockwise from the positive x-axis. a) Determine the magnitude and direction of the velocity after the collision of the 0.32 puck. b) find the percent kinetic energy lost in the collision.

1 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 9 more requests to produce the answer.

1 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Physics Help
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A 0.32-kg puck at rest on a horizontal frictionless surface is struck by a 0.22-kg puck...

    A 0.32-kg puck at rest on a horizontal frictionless surface is struck by a 0.22-kg puck moving in the positive x-direction with a speed of 6.6 m/s. After the collision, the 0.22-kg puck has a speed of 1.6 m/s at an angle of € = 60° counterclockwise from the positive x-axis. (a) Determine the velocity of the 0.32-kg puck after the collision. magnitude After writing a statement of conservation of momentum in the x and y directions, you will have...

  • Here is the question. I cant get it right. please show steps A 0.30-kg puck, initially...

    Here is the question. I cant get it right. please show steps A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg puck that is initially moving along the x-axis with a velocity of 4.3 m/s. After the collision, the 0.20-kg puck has a speed of 2.6 m/s at an angle of θ = 53° to the positive x-axis. (a) Determine the velocity of the 0.30-kg puck after the collision. magnitude     direction (b) Find...

  • A 0.284 kg puck, initially at rest on a horizontal, frictionless surface, is struck by a...

    A 0.284 kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.248 kg puck moving initially along the x axis with a speed of 3.03 m/s. After the collision, the 0.248 kg puck has a speed of 2.03 m/s at an angle of 23 degree to the positive x axis. Determine the magnitude of the velocity of the 0.284 kg puck after the collision. Answer in units of m/s.

  • A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg...

    A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially along the x axis with a speed of 2.00 m/s. After the collision, the 0.200-kg puck has a speed of 1.00 m/s at an angle of θ 52.0° to the positive x axis (see the figure below). Before the collision I, WI After the collision lf vlf sin θ ulf cos θ (a) Determine the velocity of the 0.300-kg puck after...

  • A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially...

    A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially along the x axis with a speed of 2.00 m/s. After the collision, the 0.200-kg puck has a speed of 1.00 m/s at an angle of ? = 52.0

  • A hockey puck of mass m = 0.170 kg is loaded into a spring gun with...

    A hockey puck of mass m = 0.170 kg is loaded into a spring gun with spring constant k = 306 N/m. The spring is compressed by a distance d = 0.100 m and then released, launching the puck onto a horizontal and frictionless surface of ice with speed v in the positive x-direction. This puck then collides with another puck of the same mass which is at rest at the origin. After the collision the two pucks move away...

  • 9-10 As shown in the figure, a wooden ball with mass m2 is initially at rest...

    9-10 As shown in the figure, a wooden ball with mass m2 is initially at rest on a horizontal, frictionless table. A second wooden ball with mass my moving with a speed 2.00 m/s, collides with my. Assume my moves initially along the +x-axis. After the collision, my moves with speed 1.00 m/s at an angle of e = 53.0° to the positive x-axis. Assumem, -0.2009 and m, -0.300 kg) After the colon Before the collision (a) Determine the speed...

  • Help me with this, I'll give a like for correct answers. Show steps to solution As...

    Help me with this, I'll give a like for correct answers. Show steps to solution As shown in the figure, a wooden ball with mass m2 is initially at rest on a horizontal, frictionless table. A second- en mass m, moving with a speed 2.00 m/s, collides with m2. Assume m, moves initially along the +x-axis. After the collision, m moves with speed 1.00 m/s at an angle of θ-53.0° to the positive x-axis. (Assume m1-0.200 kg and m2-0.300 kg.)...

  • As shown in the figure, a wooden bl with mass m2 is initially at rest on...

    As shown in the figure, a wooden bl with mass m2 is initially at rest on a horizontal, frictionless table. A second wooden ball with mass m moving with a speed 2.00 m/s, collides with m2. Assume m, moves initially along the +x-axis. After the collision, mi moves with speed 1.00 m/s at an angle of θ=48.0° to the positive x-axis. (Assume m1=0.200 kg and m2=0.300 kg.)  (a) Determine the speed (in m/s) of the 0.300 kg ball after the collision...

  • (20 pts) On a frictionless, horizontal air table, puck A (with mass 0.15 kg) is moving toward puck B (with mass 0.3 kg), which is initially at rest. After the collision, puck A has a velocity of...

    (20 pts) On a frictionless, horizontal air table, puck A (with mass 0.15 kg) is moving toward puck B (with mass 0.3 kg), which is initially at rest. After the collision, puck A has a velocity of 0.11 m/s to the left, and puck B has a velocity of 0.65 m/s to the right. (a) What was the speed of puck A before the collision? (b) Calculate the change in the total kinetic energy of the system (A and B)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT