Question

450 N/m 50 N B с 9 m 2 m The beam pictured above is supported by a pin at A and a roller at B. a) Find the equation for the i
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Trycol 50N 370) Ax=0 450N/m Ety =0, Ay + By = 50+ (459)(4x)() Ay + By = 2015 (1) AX 62m (By EMA =0, (B) (11) = (50) (1)+ (450Shear borce diagram VC 920.45 110404 115407 Mr. 3423.7. 7.458

Add a comment
Know the answer?
Add Answer to:
450 N/m 50 N B с 9 m 2 m The beam pictured above is supported...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • QUESTION 2 Beam ABCD is 8 m in length and is pin-supported at A and roller-supported...

    QUESTION 2 Beam ABCD is 8 m in length and is pin-supported at A and roller-supported at C as shown in Figure Q2. A counter-clockwise concentrated moment acts about the support A. A uniformly-distributed load acts on span BC and a vertical concentrated load acts at the free end D a) Determine the reactions at supports A and C. 4 marks) b) Obtain the shear force and the bending moment functions (in terms of x) for each segment along the...

  • The beam AC is supported by a smooth pin at A and a roller at B...

    The beam AC is supported by a smooth pin at A and a roller at B as shown in the figure below. a. Sketch the free-body diagram of the beam and use it to determine the support reaction components at A and B. b. Draw the shear and moment diagrams for the beam. 6. The beam AC is supported by a smooth pin at A and a roller at B as shown in the figure below. 6 kN 12 kN/m...

  • B 1.5 m 1.5 m The beam ABC is pin supported at A and link supported...

    B 1.5 m 1.5 m The beam ABC is pin supported at A and link supported by rod CD. A load of 6 kN is applied at point E. Determine the internal forces at F, including normal force (NF), shear force (Vr), and bending moment (Mp). Report these values as positive or negative according to the sign convention for beams discussed in class. Draw Complete Free Body Diagrams. Write Complete Equilibrium Equations. ДЕ 3m +1.5 m-+-1.5 m-- 6 kN

  • a. Draw a free-body diagram for the beam shown above and derive expressions for the support...

    a. Draw a free-body diagram for the beam shown above and derive expressions for the support reactions at A and B b. Draw internal force (shear and bending moment) diagrams. c. If a = 10 ft and M0 = 200 ft-lb, use the dimensions of the beam cross-section, provided on the previous page, to compute the maximum flexural and shear stresses on the beam cross-section. d. If the allowable bending stress is 925 psi and the allowable shear stress is...

  • The beam has the rectangular cross section shown. A beam of length 6 meters pin-supported 2...

    The beam has the rectangular cross section shown. A beam of length 6 meters pin-supported 2 meters from the left end and roller-supported 2 meters from the right end. The beam has a rectangular cross section with base length 50 millimeters and height 150 millimeters. Load: w, uniform along beam. Part A If w = 4 kN/m , determine the maximum bending stress in the beam. Can you please draw out the moment and shear diagrams for this one using...

  • 1) The uniform beam shown is supported by a pin at A and a light rope...

    1) The uniform beam shown is supported by a pin at A and a light rope at B. A 1,000 lb weight is supported at C. Determine the normal force, shear force, and bending moment at point P. (15 p.) 30 3 А 2) The uniform beam shown is supported by a pin at and a roller at B. Using the analytical method (i.e., sections), construct the shear and moment diagrams. Write your equations V(x) and Mix) for each section...

  • Q1. Two rigid members (BCDE and EKN) are connected by a pin at E. The structure is supported by a...

    Q1. Two rigid members (BCDE and EKN) are connected by a pin at E. The structure is supported by a pin at B and two rollers at D and N. An inclined distributed load is acting between E and K with the horizontal (12 kN/m) and vertical (16 kN/m) components. Neglect own weights and thicknesses of the members. f w 26.667 kN/m, 1.5m Draw necessary free body diagrams and determine the reaction forces at roller supports (D and N) and...

  • 50 kN 40 kN/m Q1: For the overhanging beam shown below, draw the shear force and...

    50 kN 40 kN/m Q1: For the overhanging beam shown below, draw the shear force and bending moment diagrams. Write the equations for the shear force and the bending diagrams as needed. For bonus points sketch the deformation shape (elastic shape of the beam under the given loads). Hint: A is pin support, and B is roller. 4 m 2 m

  • Q2(c) Figure Q1(c) shows a simply supported beam ABCD loaded as shown. The beam is pin-supported...

    Q2(c) Figure Q1(c) shows a simply supported beam ABCD loaded as shown. The beam is pin-supported at D, while point B is roller-supported. Determine the support reactions. b) For span BC (2<x< 4) write down the x-dependent equation for moment. x should be measured from cnd A. Plot the shear force diagram and the bending moment diagram for the beam. Show all important values of the diagrams. d) Plot the deflected shape of the beam. c) 50KN 40kN/m 25kNm 20kN/m...

  • To determine the reactive forces and moments acting on a beam;express the shear and bending...

    To determine the reactive forces and moments acting on a beam; express the shear and bending moment as functions of their positions along the beam; and construct shear and bending moment diagrams. The cantilever beam shown is subjected to a moment at A and a distributed load that acts over segment BC, and is fixed at C. Determine the reactions at the support located at C. Then write expressions for shear and bending moment as a function of their positions...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT