Question

Let (X1, ... , Xn) be an iid sample from the exponentially distributed X with pdf given by f(x;0) = -e ô, x > 0, 0 >0. Use th
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Let \ us \ consider \ n \ random \ variable \ X_{1},\ X_{2}, \ ... \ ,X_{n} \ which \ follows \\ pdf \ given \ by \\ f(x,\theta)=\frac{1}{\theta}exp\left ( -\frac{x}{\theta} \right ), 0<x<\infty.

For tesing the hypothesis

H_0:\theta=2 \ vs \ H_1:\theta=3

We have to obtain the likelihood function of the pdf and consequently the critical region is constructed based on the likelihood ration under the alternative and null hypothesis.

Let f(x_1,x_2, ... ,x_n|\theta ) \ be \ the \ pdf \ of \ the \ distribution.\ Then \ the \ likelihood \ ratio \ of \ the \\ distribution \ is \ given \ by \\\lambda(x_1,x_2, ... ,x_n;\theta_0,\theta_1)= \frac{f(x_1,x_2, ... ,x_n|\theta_1 )}{f(x_1,x_2, ... ,x_n|\theta_0 )} \\\Rightarrow \lambda(x_1,x_2, ... ,x_n;\theta_0,\theta_1)=\frac{\left ( \prod_{i=1}^{n}\frac{1}{\theta_1}exp(-\frac{x}{\theta_1}) \right )}{\left ( \prod_{i=1}^{n}\frac{1}{\theta_0}exp(-\frac{x}{\theta_0}) \right )} \\\Rightarrow \lambda(x_1,x_2, ... ,x_n;\theta_0,\theta_1)=\frac{\left ( \frac{1}{\theta_1} \right )^nexp\left (\frac{ -\sum_{i=1}^{n}x_i }{\theta_1}\right )}{\left ( \frac{1}{\theta_0} \right )^nexp\left (\frac{ -\sum_{i=1}^{n}x_i }{\theta_0}\right )}>kTherefore the critical region is given by

C(x_1,x_2, ... ,x_n,\theta_0, \theta_1)=\left \{ {(x_1,x_2,...,x_n): \lambda(x_1,x_2, ... ,x_n;\theta_0,\theta_1)>k} \right \}

\\\lambda(x_1,x_2, ... ,x_n;2,3)= \frac{f(x_1,x_2, ... ,x_n|3 )}{f(x_1,x_2, ... ,x_n|2 )} \\\Rightarrow \lambda(x_1,x_2, ... ,x_n;2,3)=\frac{\left ( \prod_{i=1}^{n}\frac{1}{3}exp(-\frac{x}{3}) \right )}{\left ( \prod_{i=1}^{n}\frac{1}{2}exp(-\frac{x}{2}) \right )} \\\Rightarrow \lambda(x_1,x_2, ... ,x_n;2,3)=\frac{\left ( \frac{1}{3} \right )^nexp\left (\frac{ -\sum_{i=1}^{n}x_i }{3}\right )}{\left ( \frac{1}{2} \right )^nexp\left (\frac{ -\sum_{i=1}^{n}x_i }{2}\right )}>k \\\lambda(x_1,x_2, ... ,x_n;2,3)=\left ( \frac{2}{3} \right )^nexp\left (\frac{ -\sum_{i=1}^{n}x_i }{3}+\frac{ \sum_{i=1}^{n}x_i }{2} \right) \\\\\lambda(x_1,x_2, ... ,x_n;2,3)=\left ( \frac{2}{3} \right )^nexp\left (\frac{ \sum_{i=1}^{n}x_i }{6} \right)

Therefore the critical region is given by

C(x_1, x_2, ... ,x_n ,2,3)=\left \{ (x_1, x_2, ... ,x_n): \lambda(x_1, x_2, ... ,x_n)>k \right \}\\ C(x_1, x_2, ... ,x_n ,2,3)=\left \{ (x_1, x_2, ... ,x_n: \left ( \frac{2}{3} \right )^nexp\left (\frac{ \sum_{i=1}^{n}x_i }{6} \right)>k \right \} \\\Rightarrow C(x_1, x_2, ... ,x_n ,2,3)=\left \{(x_1, ... ,x_n)= \sum_{i=1}^{n}x_i >k_1\right \}

where we have

\left ( \frac{2}{3} \right )^nexp\left (\frac{ \sum_{i=1}^{n}x_i }{6} \right)>k \\ exp\left (\frac{ \sum_{i=1}^{n}x_i }{6} \right)>k\left ( \frac{3}{2} \right )^n=a \\ Taking \ log \ on \ both \ side \\ logexp\left (\frac{ \sum_{i=1}^{n}x_i }{6} \right)>loga \\\frac{ \sum_{i=1}^{n}x_i }{6} >loga \\\sum_{i=1}^{n}x_i >6loga=k_1 \\\sum_{i=1}^{n}x_i >k_1

where k_1 is obtained by size condition with

P(\sum_{i=1}^{n}x_i>k_1)=\alpha.

Add a comment
Know the answer?
Add Answer to:
Let (X1, ... , Xn) be an iid sample from the exponentially distributed X with pdf...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT