Question

A solid shaft AB, of 100 mm diameter, is rigidly connected at itsends to two hollow shafts ACand ED (both of external diameter 138 mm and internal diameter 106 mm, At Cand Dtwo masses of 130 kg and 250 kg, and of radius of gyration 175 mm and 375 mm respectively, are attached to the ends of the hollow shafts. Determine from first principles the frequency of free torsional vibrations and the position of the node 600mn 400mm -5m

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Please refer the diagram below:

We assume steel shaft

G=80x109 GPa

In the diagram above, k2 is torsional stiffness of shaft AB, k1 is that of shaft AC and k3 is that of shaft BD.

k_2=\frac{GJ_2}{l_2}=\frac{80\times10^9(\pi D^4/32)}{1.5}=\frac{80\times10^9(\pi 0.1^4/32)}{1.5}=0.5236\times10^6\: Nm/rad

k_1=\frac{GJ_1}{l_1}=\frac{80\times10^9[\pi (D_o^4-D_i^4)/32]}{0.6}=\frac{80\times10^9[\pi (0.138^4-0.106^4)/32]}{1.5}=3.095\times10^6\: Nm/rad

k_3=\frac{GJ_3}{l_3}=\frac{80\times10^9[\pi (D_o^4-D_i^4)/32]}{0.4}=\frac{80\times10^9[\pi (0.138^4-0.106^4)/32]}{0.4}=4.642\times10^6\: Nm/rad

The equivalent spring stiffness is given by

\frac{1}{k_e}=\frac{1}{k_1}+\frac{1}{k_2}+\frac{1}{k_3}=\frac{1}{0.5236\times10^6}+\frac{1}{3.095\times10^6}+\frac{1}{4.642\times10^6}=0.4084\times10^6\: Nm/rad

Moments of Inertia

I_1=m_1k_1^2=138(0.175^2)=4.1344\: kg-m^2

I_2=m_2k_2^2=250(0.375^2)=35.156\: kg-m^2

The equivalent system is shown below:

Refer free body diagram below:

ke(-) 好レ/

The equations of motion are

I_1\ddot \theta_1=-k_e(\theta_1-\theta_1)

I_2\ddot \theta_2=k_e(\theta_1-\theta_1)

In Matrix form

\begin{bmatrix} I_1 &0 \\ 0 & I_2 \end{bmatrix}\begin{Bmatrix} \ddot\theta_1\\ \ddot\theta_2 \end{Bmatrix}+\begin{bmatrix} k_e &-k_e \\ -k_e & k_e \end{bmatrix}\begin{Bmatrix} \theta_1\\ \theta_2 \end{Bmatrix}=0

We assume solution in the form

\theta_1(t)=\Theta _1sin(\omega t+\phi)

\theta_2(t)=\Theta _2sin(\omega t+\phi)

Substituting in the matrix equation above

\begin{bmatrix} -I_1\omega^2+k_e &-k_e \\ -k_e & -I_2\omega^2+k_e \end{bmatrix}\begin{bmatrix} \Theta_1\\ \Theta_2 \end{bmatrix}=0

For non trivial solution

det\begin{bmatrix} -I_1\omega^2+k_e &-k_e \\ -k_e & -I_2\omega^2+k_e \end{bmatrix}=0

Substituting values

det\begin{bmatrix} -4.1344\omega^2+0.4084\times10^6 &-0.4084\times10^6 \\ -0.4084\times10^6 & -35.156\omega^2+0.4084\times10^6 \end{bmatrix}=0

The characteristics equation is

(-4.1344\omega^2+0.4084\times10^6)(-35.156\omega^2+0.4084\times10^6)-(0.4084\times10^6)^2=0

Solving the above the lowest value of \omega is 0

The other value of \omega

\omega=332.26\: rad/s

Mode shapes

For \omega=0

From Matrix equation

k_e\Theta_1-k_e\Theta_2=0

\Theta_1=\Theta_2

Mode shape is

\phi_1=\begin{Bmatrix} 1\\ 1 \end{Bmatrix}

For \omega=332.26 rad/s

[-4.1344(332.26^2)+0.4084\times10^6]\Theta_1-0.4084\times10^6\Theta_2=0

\Theta_2=-0.1176\Theta_1

Or

\phi_2=\begin{Bmatrix} 1\\ -0.1176 \end{Bmatrix}

Add a comment
Know the answer?
Add Answer to:
A solid shaft AB, of 100 mm diameter, is rigidly connected at itsends to two hollow...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT