Question

Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10...

Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10 Mpa, 560 C with a mass flow rate of 7.8kg/s and exits at 8 kPa. Saturated liquid enters the pump at 8 kPa. The isentropic turbine efficiency is 85%, and the isentropic pump efficiency is 85%. Cooling water enters the adiabatic condenser at 18 C and exits at 36 C with no significant change in pressure and assuming the specific heat of the cooling water remains constant at cp = 4.179 kJ/kg-K.

a.) Enter the enthalpy values at all state points.

b.) Find the net power produced (kW)

c.) Find the heat transferred from the boiler to the steam (kW)

d.) Find the thermal efficiency of the cycle.

e.) Heat transferred from the steam in the condenser (kW)

f.) Mass flow rate of condenser cooling water (kg/s)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

- Ruperheated steam enters h furbine t 10M Pa、530 ,c. seturted (it enten-tte. Pump at SE:Pa 予 Mno).turbin.sgs72%) pum h,-35203520.-180598 3333,462-Ble,K7, 8 =26047, 33 kis (Yout -2-h3 =よ318-53-16875-2143.78 = (6768-2tyEQ (η =m(p)&T 16768.28 4 rio: 16

Add a comment
Know the answer?
Add Answer to:
Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 700°C and the turbine exit pressure is 8 kPa. Saturated liquid enters the pump at 8 kPa. The heat transfer rate to the working fluid in the steam generator is 24 MW. The isentropic turbine efficiency is 88%, and the isentropic pump efficiency is 82%. Cooling water enters the condenser at 18°C and exits at 36°C with no significant change in pressure. Determine...

  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters...

    Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 8 MPa, 480℃, and the condenser pressure is 8 kPa. Steam expands through the first stage turbine to 700 kPa and then is reheated to 480℃. Assumptions: see problem 1 . Determine for the cycle(a) the rate of heat addition, in kJ per kg to the working fluid in the steam generator.(b) the thermal efficiency.(c) the rate of heat transfer from the...

  • Problem 8.021 SI Water is the working fluid in a Rankine cycle with reheat. Superheated vapor...

    Problem 8.021 SI Water is the working fluid in a Rankine cycle with reheat. Superheated vapor enters the turbine at 10 MPa, 520°C, and the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 520°C. The pump and each turbine stage have an isentropic efficiency of 80%. Determine for the cycle: (a) the heat addition, in kJ per kg of steam entering the first-stage turbine. (b) the percent thermal efficiency....

  • Steam is the working fluid in a simple, ideal Rankine cycle. Saturated vapor enters the turbine...

    Steam is the working fluid in a simple, ideal Rankine cycle. Saturated vapor enters the turbine at 8 MPa and saturated liquid exits the condenser at a pressure of 8 kPa. The net power output of the cycle is 100 MW. Determine for the cycle: i. Thermal efficiency ii. Back work ratio iii. Mass flow-rate of the steam in kg/h iv. Rate of heat transfer to the working fluid as it passes through the boiler in MW v. Rate of...

  • (15 pts.) In an ideal Rankine cycle that uses water as the working fluid. Superheated steam...

    (15 pts.) In an ideal Rankine cycle that uses water as the working fluid. Superheated steam exits the boiler at 4 MPa and 600°C with a mass flow rate of 8 kg/s. The steam leaves the turbine at a pressure of 100 kPa. (a) Sketch the cycle on a T-s diagram (6) Determine the power output of the turbine (c) Determine the rate of heat loss from the condenser (d) The required pump power (e) The rate of heat addition...

  • Water is the working fluid in an ideal regenerative Rankine cycle with one open feed water heater, Figure 2. Upstream of the high pressure turbine superheated vapour with a mass flow rate of 90 kg/s...

    Water is the working fluid in an ideal regenerative Rankine cycle with one open feed water heater, Figure 2. Upstream of the high pressure turbine superheated vapour with a mass flow rate of 90 kg/s entres the first-stage turbine at a pressure of 14 MPa Each turbine stage has an isentropic efficiency of 90%. The temperature of the inlet vapour is 520°C. The steam expands through the first-stage turbine to a pressure of 0.9MPa where some of the steam is...

  • Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the...

    Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 12 MPa, 480 °C and the pressure at the exit of the second stage turbine is 8 kPa. Steam expands through the first stage turbine to 1 MPa and then is reheated to 440 °C. Saturated liquid water leaves the condenser. After the pump, pressure goes back to 12 MPa. Find: (1) Sketch the process on a T-s diagram and justify the location...

  • Consider a power plant with water as the working fluid that operates on a Rankine cycle....

    Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW. Superheated steam enters the turbine at 8 MPa and 600°C (h = 3642 kJ/kg; s = 7.0206 kJ/kg K) and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser. The isentropic efficiency of the turbine is 85%. The pump has...

  • 6. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine...

    6. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa. The mass flow rate of steam entering the turbine is 120 kg/s. Determine: (a) Draw the ideal Rankine cycle in T-S diagram (b) The net power developed, in kW. (b) The rate of heat transfer to the steam passing through the boiler, in kW. (c) The thermal efficiency. 2 P (kPa) 16000 16000 TC)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT