Question

5: Wave on a hanging string (8 points) A heavy metallic cable of length L and mass m hangs from the ceiling. (a) (2 points) I
0 0
Add a comment Improve this question Transcribed image text
Answer #1

ą Griven (1 . - m length of heavy metallic cable hangs from celling. is 2 and mass - FBD p y=L Consider a little piece at hei6 Now the speed of a vibrational ware traveling along the cable at a point yas. where f = tension at paintyy . tag . We know

Add a comment
Know the answer?
Add Answer to:
5: Wave on a hanging string (8 points) A heavy metallic cable of length L and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A heavy rope with length L and mass M is attached to the ceiling and is...

    A heavy rope with length L and mass M is attached to the ceiling and is allowed to hang freely. (a) Find an expression for the tension in the rope at a point a distance y from the bottom, and use this to show that the speed of transverse waves on the rope is independent of its mass and length but does depend on the distance y according to the equation ?=??. (b) If L = 3.0 m and the...

  • A transverse wave is traveling along a string of total mass M, length L, and tension...

    A transverse wave is traveling along a string of total mass M, length L, and tension T. Which of the following is correct? a. The wavelength of the wave is proportional to L. b. The wave velocity depends on M,L,and T. c. The frequency of the wave is proportional to the wavelength. d. The speed of motion of a point on the string is the same as the velocity of propagation of the wave.

  • Problem 1 [8 pts] A uniform string of mass m and length L hangs vertically from...

    Problem 1 [8 pts] A uniform string of mass m and length L hangs vertically from the ceiling. (a) Find the tension in the rope as a function of distance from the lower end, and therefore determine the speed of a wave pulse as a function of position. (b) Solve by integration 2 = v(y) to determine the time it takes a wave pulse to travel the full length of the string.

  • By wiggling one end, a sinusoidal wave is made to travel along a stretched string that...

    By wiggling one end, a sinusoidal wave is made to travel along a stretched string that has a mass per unit length of 22.0 g/m. The wave may be described by the wave function y 0.20 sin (0.90x-42) where x and y are in meters and t s in seconds. 1. (a) Determine the speed of the wave. Is the wave moving in the +x direction or the -x direction? b) What is the tension in the stretched string? (c)...

  • DQuestion 5 1 pts A simple harmonic oscillator at the point x-0 generates a wave on...

    DQuestion 5 1 pts A simple harmonic oscillator at the point x-0 generates a wave on a horizontal rope. The oscillator operates at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. The rope has a linear mass density of 50.0 g/m, and is stretched with a tension of 5.00 N. Find the maximum transverse acceleration of points on the rope, in m/s? Sample submission: 1230 Note: your answer should be much larger than g. which is...

  • I need help with problem #3, please and thank you! Problem #2 (25 points) - The...

    I need help with problem #3, please and thank you! Problem #2 (25 points) - The True Hanging String Shape After solving for ye(2) for the scenario in Problem #1, show that the mag- nitude of the tension in the string is given by the expression T(X) = To cosh (Como) where To = Tmin is the minimum tension magnitude in the string which occurs at the bottom point of the string, and then show that the maximum tension magnitude...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT