Question

2- The integrated form of the pseudo rate law depends on thereaction order with respect to CV. The integrated rate laws for y
0 0
Add a comment Improve this question Transcribed image text
Answer #1

In Y= mX + b, y is the y coordinat, m is the slope, x is the x coordinate and b is the y intercept.

Comparing equation 3, graph between ln[CV]t vs t will be a straight line but inverted since the slope is negative. When we extrapolate the graph, it will touch on y axis at ln[CV]0

In equation 4, slope is positive and the graph 1/[CV]t vs t will be a straight line. and when extrapolate, it will touch on y axis at 1/[CV]0

Add a comment
Know the answer?
Add Answer to:
2- The integrated form of the pseudo rate law depends on thereaction order with respect to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • ± Using Integrated Rate Laws Part A The reactant concentration in a zero-order reaction The integrated...

    ± Using Integrated Rate Laws Part A The reactant concentration in a zero-order reaction The integrated rate laws for zero-, first-, and second order reaction may be arranged such that they resemble the equation for a straight line y=mx + b was 9.00x102 M after 155 s and 3.50x102 M after 320 s. What is the rate constant for this reaction? Express your answer with the appropriate units Indicate the multiplication of units, as necessary explicitly either with a multiplication...

  • Rewrite the integrated form equations for zero, first and second order in terms of absorption. Where...

    Rewrite the integrated form equations for zero, first and second order in terms of absorption. Where ε is the molar absorptivity of crystal violet at the wavelength of the maximum absorption peak, l is the length of the cuvette (l = 1cm) and [CV+ ] is the crystal violet concentration. The absorbance, Ab, may therefore be used as a measure of the crystal violet concentration in all calculations since: At time = 0: Abo = ε l [CV+ ]o At...

  • Help please CHEM 122 rate laws Tean Number: Names: versus time, Integrated Dr. Sushilla Knottenbelt): Concentration...

    Help please CHEM 122 rate laws Tean Number: Names: versus time, Integrated Dr. Sushilla Knottenbelt): Concentration following table: for the general reaction A orders. products for the different reaction Linear form-what should Half life equation be graphed, y vs x to get a straight line? What will the slope (m) be? The y-axis intercept? Reaction Rate form order integrated form Linear form-what Rate = k 2K x=t m--k I Rote In 2 k tın 2 Rate k[A m-K 2. The...

  • The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...

    The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line, y=mx+by=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0[A]=−kt+[A]0 [A] vs. t[A] vs. t −k 1 ln[A]=−kt+ln[A]0ln⁡[A]=−kt+ln⁡[A]0 ln[A] vs. tln[A] vs. t −k 2 1[A]= kt+1[A]01[A]= kt+1[A]0 1[A] vs. t1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 8.00×10−2 MM after 130 ss and 4.00×10−2 MM after 380 ss . What is...

  • + Using Integrated Rate Laws The integrated rate laws for zero-, first-, and second-order reaction may...

    + Using Integrated Rate Laws The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line, y = mx + b. Slope Order O 1 2 Integrated Rate Law Graph [A] = - kt + [A] [A] vs. t In[A] = -kt + In[A], In[A] vs. t LÀ=kt + TA LÀ vs. t -k Review Constants Periodic Table Part A The reactant concentration in a zero-order reaction was...

  • The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...

    The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line, y=mx+by=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0[A]=−kt+[A]0 [A] vs. t[A] vs. t −k−k 1 ln[A]=−kt+ln[A]0ln⁡[A]=−kt+ln⁡[A]0 ln[A] vs. tln[A] vs. t −k−k 2 1[A]= kt+1[A]01[A]= kt+1[A]0 1[A] vs. t1[A] vs. t kk A.) The reactant concentration in a zero-order reaction was 0.100 MM after 165 ss and 4.00×10−2 MM after 305 ss . What is the...

  • + Using Integrated Rate Laws The integrated rate laws for zero-, first-, and second-order reaction may be arrang...

    + Using Integrated Rate Laws The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line, y = mx + b. Slope Order O 1 2 Integrated Rate Law Graph [A] = - kt + [A] [A] vs. t In[A] = -kt + In[A], In[A] vs. t LÀ=kt + TA LÀ vs. t -k Review Constants Periodic Table Part A The reactant concentration in a zero-order reaction was...

  • HW 4 ± Using Integrated Rate Laws Resources previous | 1 of 11 | next» ±...

    HW 4 ± Using Integrated Rate Laws Resources previous | 1 of 11 | next» ± Using Integrated Rate Laws Part A The integrated rate laws for zero-, first-, and second- order reaction may be arranged such that they resemble the equation for a straight line y=mx + b Mafter 125 s and 3.00x10 M The reactant concentration in a zero-order reaction was 6.00x10 after 305 s. What is the rate constant for this reaction? Express your answer with the...

  • Most of the time, the rate of a reaction depends on the concentration of the reactant....

    Most of the time, the rate of a reaction depends on the concentration of the reactant. In the case of second-order reactions, the rate is proportional to the square of the concentration of the reactant. Select the image to explore the simulation, which will help you to understand how second-order reactions are identified by the nature of their plots. You can also observe the rate law for different reactions. In the simulation, you can select one of the three different...

  • us Course Home Homework Chapter 14 Using Integrated Rate Laws 8 of 16 > The integrated...

    us Course Home Homework Chapter 14 Using Integrated Rate Laws 8 of 16 > The integrated rate laws for zero-, f and second- order reaction may be arranged such that they resemble the equation for a straight line y = m + b a Review Constants Periodic Table The reactant concentration in a first-order reaction was 9.90x10-2 Mator 35.0 and 240x10-3 Matter 65.0 s What is the rate constant for this reaction? Express your answer with the appropriate units, Indicate...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT