Question

Problem 4.080 A feedwater heater in a vapor power plant operates at steady state with liquid entering at inlet 1 with T45°C and p3.0 bar. Water vapor at T4400C and pz 3.0 bar enters at inlet 2, Saturated liquid water exits with a pressure of pj = 3.0 bar. Ignore heat transfer with the surroundings and all kinetic and potential energy effects. If the mass flow rate of the liquid entering at inlet 1 is mi = 3.2 × 105 kg/h, determine the mass flow rate at inlet 2, m2, in kg/h. kg/h the tolerance is +/2%

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Pago No.: Tz :440 = 45℃ t88-388 Balanmie eanis 320000 3188-388 m2 x53 59-16mm 547 21. m2 621066-19.耳だ

Add a comment
Know the answer?
Add Answer to:
Problem 4.080 A feedwater heater in a vapor power plant operates at steady state with liquid...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • PROBLEM 4 A feedwater heater operates at steady state with liquid water entering at inlet 1...

    PROBLEM 4 A feedwater heater operates at steady state with liquid water entering at inlet 1 at 7 bar, 40°C, and a mass flow rate of 70 kg/s. A separate stream of water enters at inlet 2 as a two-phase liquid-vapor mixture at 7 bar with a quality of 97%. Saturated liquid at 7 bar exits the feedwater heater at 3. Ignoring heat transfer with the surroundings and neglecting kinetic and potential energy effects, determine the mass flow rate, in...

  • An open feedwater heater operates at 7 bars. Compressed liquid water at 35°C enters at one Given: section, while su...

    An open feedwater heater operates at 7 bars. Compressed liquid water at 35°C enters at one Given: section, while superheated vapor enters at another section. The fluids mix and leave the heater as a saturated liquid. Let To 20°Cand Po 1 bar and assume the feedwater heater is well insulated Find: a) The change in flow exergy (kJ/s) if the flow rate of compressed liquid is 72.8 kg/s and the mass flow rate of superheated vapor is 16.7 kg/s and...

  • Consider a reheat–regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an...

    Consider a reheat–regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 12.0 MPa, 520C and expands to 0.6 MPa. The steam is reheated to 480C before entering the second turbine, where it expands to the condenser pressure of 0.006 MPa. Steam is extracted from the first turbine at 2 MPa and fed to the closed feedwater heater. Feedwater leaves the closed heater at 205C and 8.0...

  • A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...

    A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 6 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...

  • A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...

    A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 28 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...

  • Liquid water enters a feedwater heater at inlet 1 with inlet condition ls 15 mpa, 40celcius...

    Liquid water enters a feedwater heater at inlet 1 with inlet condition ls 15 mpa, 40celcius at 60kg/s. Another stream of water in saturated mixture enters the heater at inlet 2 at temperature of 175 celcius. The heater operates at steady state and heat transfer to surrounding can be neglected. At exit 3, saturated liquid flows out at 275 kpa. Select two different values of mixture quality at inlet 2 between 0.5 and 0.8, and subsequently plot the mass flow...

  • SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed fee...

    SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed feedwater heater. Superheated steam enters the turbine with a mass flow rate of 120 kg/s at 16 MPa and 560°C (State 1). Some fraction of the steam is extracted at 40 bar (State 2) and is supplied to the closed feedwater heater. The remaining steam expands to a pressure of 3 bar (State 3), another fraction is extracted at this pressure, and is supplied to...

  • Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an...

    Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 8.0 MPa, 480 C and expands to 0.7 MPa. The steam is reheated to 440°C before entering the second turbine, where it expands to the condenser pressure of 0.008 MPa Steam is extracted from the first turbine at 2 MPa and fed to the closed feedwater heater. Feedwater leaves the closed heater at 205 C...

  • Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an...

    Consider a reheat-regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 8.0 MPa, 500°C and expands to 0.8 MPa. The steam is reheated to 500°C before entering the second turbine, where it expands to the condenser pressure of 10 kPa. Steam is extracted from the first turbine at 2 MPa and fed to the closed feedwater heater. Feedwater leaves the closed heater at 200°C and 8.0...

  • Question 4 Liquid water enters a feedwater heater at inlet 1 with inlet conditions 15 MPa,...

    Question 4 Liquid water enters a feedwater heater at inlet 1 with inlet conditions 15 MPa, 40°C at 60 kg/s. Another stream of water in saturated mixture enters the heater at inlet 2 at temperature of 175 °C. The heater operates at steady state and heat transfer to surrounding can be neglected. At exit 3, saturated liquid flows out at 275 kPa. Select two (2) different values of mixture quality at inlet 2 between 0.5 and 0.8, and subsequently plot...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT