Question

Consider the small cube of mass m in the figure. It slides down a circular path of radius R carved into a large block of mass M. M rests on a table, and both blocks move without friction (i.e. M can easily slide sideways). The blocks are initially at rest, and m starts from the top of the path.

Find the velocity of m as it leaves the block.

Image for Consider the small cube of mass m in the figure. It slides down a circular path of radius R carved into a larg

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider the small cube of mass m in the figure. It slides down a circular path...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. The small mass m is to slide down the large mass M without friction. The...

    1. The small mass m is to slide down the large mass M without friction. The track along which the small block slides is a quarter circle with radius R. The large mass itself is free to move on a frictionless horizontal surface. Initially both masses are at rest with the small mass at the top of the quarter circle, as shown in the figure. (a) (5 Pts.) What is the initial total mechanical energy with respect to the horizontal...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A small block with mass 0.0475 kg slides in a vertical circle of radius 0.0730 m...

    A small block with mass 0.0475 kg slides in a vertical circle of radius 0.0730 m on the inside of a circular track. There is no friction between the track and the block. At the bottom of the block's path, the normal force the track exerts on the block has magnitude 3.70 N. What is the magnitude of the normal force that the track exerts on the block when it is at the top of its path?

  • A small block with mass 0.0500 kg slides in a vertical circle of radius 0.0760 m...

    A small block with mass 0.0500 kg slides in a vertical circle of radius 0.0760 m on the inside of a circular track. There is no friction between the track and the block. At the bottom of the block's path, the normal force the track exerts on the block has magnitude 3.70 N Part A: What is the magnitude of the normal force that the track exerts on the block when it is at the top of its path? HW...

  • 5. A particle of mass m slides without friction and starting from rest down a block...

    5. A particle of mass m slides without friction and starting from rest down a block of mass M in which the surface is shaped into a quadrant of a circle of radius R. The block also slides without friction on a table top. Choose two suitable generalized coordinates a) Using the Lagrange-multiplier formalism, find the equations of motion of the mass and the block and the reaction force of the block on the mass (ie. the constraint force b)...

  • 1. Ice cube in a loop A small ice cube of mass m slides on a...

    1. Ice cube in a loop A small ice cube of mass m slides on a frictionless looping track, as shown in the figure below. Assume the ice starts from rest at a point y = 4R above the flat part of the track, where R is the radius of the looped part of the track. (a) What is the speed of the ice cube at the highest point in the loop? (b) What normal force is exerted on the...

  • A block of mass m1 = 1.70 kg moving at v1 = 2.00 m/sundergoes a completely...

    A block of mass m1 = 1.70 kg moving at v1 = 2.00 m/sundergoes a completely inelastic collision with a stationary block of mass m2 = 0.300 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3.(Figure 1) Assume that the blocks slide without...

  • A small block with mass 0.0375 kg slides in a vertical circle of radius 0.600 m...

    A small block with mass 0.0375 kg slides in a vertical circle of radius 0.600 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 4.05 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the...

  • . A small mass m starts from rest and slides from the top of a fixed...

    . A small mass m starts from rest and slides from the top of a fixed sphere of radius r (b) Suppose there is friction between the mass and the sphere with friction coefficient μ,-0.1. what is the minimum angle Emin at which the mass will start to slide along the sphere? (c) The mass is now placed just past this minimum angle and released. The coefficient of kinetic friction k is small but not zero. Does the mass fly...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT