Question

two blocks (m1=45kg and m2=37 kg) are connected by a taut cable. They are pulled along...

two blocks (m1=45kg and m2=37 kg) are connected by a taut cable. They are pulled along a frictionless surface by a 3rd block (M=162kg) that is hanging over a pulley. Find the tension of the cable.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

cgiam m, and m tie trm a. m le ama h) m,m = 531.58 N

answered by: ANURANJAN SARSAM
Add a comment
Know the answer?
Add Answer to:
two blocks (m1=45kg and m2=37 kg) are connected by a taut cable. They are pulled along...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

  • A block of mass m1 = 39 kg on a horizontalsurface is connected to a...

    A block of mass m1 = 39 kg on a horizontal surface is connected to a mass m2 = 22.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction betweenm1 and the horizontal surface is 0.23.A) What is the magnitude of the acceleration (in m/s2) of the hanging mass?B) Determine the magnitude of the tension (in N) in...

  • Two blocks of mass m1 = 3.00 kg and m2 = 7.50 kg are connected by a mass less string that passes over a frictionless pulley

    Two blocks of mass m1 = 3.00 kg and m2 = 7.50 kg are connected by a mass less string that passes over a frictionless pulley. The inclines are frictionless. So this is like a triangle with a pulley at the top and both blocks resting at either side of the pulley each at a 35 degree angle. (a) Find the magnitude of acceleration of each block. (b) Find the tension in the string. I found the acceleration to be...

  • Two blocks of masses m1 and m2 are connected by a light cord that passes over...

    Two blocks of masses m1 and m2 are connected by a light cord that passes over a pulley of mass M, as shown. Block m2 slides on a frictionless horizontal surface. The blocks and pulley are initially at rest. When m1 is released, the blocks accelerate and the pulley rotates. The total angular momentum of the system of the two blocks and the pulley relative to the axis of rotation of the pulley isthe same at all times.proportional to I1,...

  • Two blocks m1 and m2 with masses 50 kg and 100 kg respectively are connected by...

    Two blocks m1 and m2 with masses 50 kg and 100 kg respectively are connected by a string over a pulley that is frictionless with negligible mass. The 50 kg block slides on a 37 degree incline that has a coefficient of kinetic friction of 0.25. This block is also attached to a wall at the base of the incline by an ideal spring that has a spring coefficient of 100 N/m. The system is released from rest with a...

  • Two blocks m1=8.1 kg and mass m2 are connected by a massless cord over a massless...

    Two blocks m1=8.1 kg and mass m2 are connected by a massless cord over a massless pulley as shown below. the block of mass m2 is placed on a rough inclined surface at an angle (theta = 55) Two blocks my = 8.1 kg and mass m2 are connected by a massless cord over a massless pulley as shown below. The block of mass mz is placed on a rough inclined surface at an angle = 55°, and a force...

  • A mass, m1 = 5.47 kg, resting on a frictionless horizontal table is connected to a...

    A mass, m1 = 5.47 kg, resting on a frictionless horizontal table is connected to a cable that passes over a pulley and then is fastened to a hanging mass, m2 = 12.67 kg, as in the figure. When we release the mass m1, it accelerates across the table. Find (a) the acceleration (m/s2 ) of the masses and (b) the tension (N) in the cable. Neglect the mass of the cable and pulley.

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 23.0 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.30. (Assume gravity acts toward the +ydirection and the +x-axis is parallel to the surface and to the right.) (a) What is...

  • The figure below shows two blocks connected to each other by a light cable that passes...

    The figure below shows two blocks connected to each other by a light cable that passes over a pulley with negligible friction. The block of mass m1 = 4.50 kg lies on a horizontal table with negligible friction, while the block of mass m2 = 11.2 kg hangs vertically. (a) What is the magnitude of the acceleration of each block (in m/s2)? (Here, a1 is the acceleration of m1,and a2 is the acceleration of m2.) a1 = m/s2 a2 =...

  • Two blocks of mass m1 and m2 > m1 are drawn above.

    Two blocks of mass m1 and m2 > m1 are drawn above. The block m1 sits on a frictionless inclined plane tipped at an angle θ with the horizontal as shown. Block m2 is connected to mı by a massless unstretchable string that runs over a massless, frictionless pulley to hang over a considerable drop. At time t = 0 the system is released from rest. a) Draw a force/free body diagram for the two masses. b) Find the magnitude of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT