Question

7. The chemical engineering lab contains a 1.5 m rigid tank installed with a paddle wheel. Suppose this tank is filled with 2
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Nolume st igid tamk (v) ू (को male st (2 27x1000 449m 2=150kpa 1 RE100kpa PV nRT V Cmst gd contelimer) PT P T 15entropy chamge m4, m)-nnl AS 2 Kalrss)9n(is) -61-3436mal) (B314 = ) n(5) 0.71( 0.2o665( 0.510 K3K OS =

Constant volume heat capacity Cv can be found from any reference book or data sheet.

Thanks

Add a comment
Know the answer?
Add Answer to:
7. The chemical engineering lab contains a 1.5 m rigid tank installed with a paddle wheel....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The UTC chemical engineering lab contains a 1.5 m3 rigid tank installed with a paddle wheel....

    The UTC chemical engineering lab contains a 1.5 m3 rigid tank installed with a paddle wheel. Suppose this tank is filled with 2.7 kg of carbon dioxide at 100 kPa, and that paddle-wheel work is done on the system until the pressure rises to 150 kPa. Determine the entropy change of the system during this process (kJ/K). You may assume that the tank is well-insulated, and that CO2 is an ideal gas with constant specific heats at RT.

  • A rigid tank contains an ideal gas at 40'C that is being stirred by a paddle...

    A rigid tank contains an ideal gas at 40'C that is being stirred by a paddle wheel. The paddle wheel does 200 kJ of work on the ideal gas. It is observed that the temperature of the ideal gas remains constant during this process as a result of heat transfer between the system and the surroundings at 30°C. Determine the entropy change of the ideal gas. Heat Ideal gas 40°C 30°C The entropy change of the ideal gas is JK

  • Problem 6.028 SI Air contained in a rigid, insulated tank fitted with a paddle wheel, initially...

    Problem 6.028 SI Air contained in a rigid, insulated tank fitted with a paddle wheel, initially at 300 K, 2 bar, and a volume of 2 m, is stirred until its temperature is 600 K. Assuming the ideal gas model for the air, and ignoring kinetic and potential energy, determine (a) the final pressure, in bar (b) the work, in kJ (c) the amount of entropy produced, kJ/K Solve using: (1) data from Table A-22. (2) constant cy read from...

  • A closed, rigid tank fitted with a paddle wheel contains 1.6 kg of air, initially at...

    A closed, rigid tank fitted with a paddle wheel contains 1.6 kg of air, initially at 200oC, 1 bar. During an interval of 10 minutes, the paddle wheel transfers energy to the air at a rate of 1 kW. During this time interval, the air also receives energy by heat transfer at a rate of 0.5 kW. These are the only energy transfers. Assume the ideal gas model for the air, and no overall changes in kinetic or potential energy....

  • 2. A rigid tank of 0.8 m contains 7 kg of Sulfur dioxide. A paddle wheel...

    2. A rigid tank of 0.8 m contains 7 kg of Sulfur dioxide. A paddle wheel (shaft work) is used to transfer energy to the sulfur dioxide at a rate of 30 W for two hours. If the specific internal energy increases by 30 kJ/kg during this process, determine the following: a) The final specific volume b) Work transfer c) Heat transfer Ignore kinetic and potential energy effects

  • i want the solution with explaination in a good handwriten .. A rigid, insulated tank fitted...

    i want the solution with explaination in a good handwriten .. A rigid, insulated tank fitted with a paddle wheel is filled with water, initially a two-phase liquid-vapor mixture at 200 kPa, consisting of 0.04 kg of saturated liquid and 0.04 kg of saturated vapor. The tank contents are stirred by the paddle wheel until all of the water is saturated vapor at a pressure greater than 138 kPa. Kinetic and potential energy effects are negligible. For the water, determine...

  • M&S Problem 6.25. A rigid, insulated container contains 3 m? of air. The container is fitted...

    M&S Problem 6.25. A rigid, insulated container contains 3 m? of air. The container is fitted with a paddle wheel and the air inside is initially at 295 K, 200 kPa. The air receives 1546 kJ from the paddle wheel. Assuming the air behaves as an ideal gas, determine (a) the mass of the air; (b) the final temperature in K; and (c) the amount of entropy generated, in kJ/K.

  • write more details as you can,please thank you 7.22 A rigid, insulated tank contains 0.6 kg...

    write more details as you can,please thank you 7.22 A rigid, insulated tank contains 0.6 kg of air, initially at 200 kPa, 20°C. The air is stirred by a paddle wheel until its pressure is 250 kPa. Using the ideal gas model with c, = 0.72 kJ/kg . K, determine, in kJ, (a) the work, (b) the change in exergy of the air, and (c) the amount of exergy destroyed. Ignore the effects of motion and gravity, and let To...

  • Thermodynamics 1. (correct answer: 0.080595 ) Initially, an insulated rigid tank contains 20 kg of water...

    Thermodynamics 1. (correct answer: 0.080595 ) Initially, an insulated rigid tank contains 20 kg of water at 29.5oC and 101 kPa. The tank also contains a 4.86 kg aluminum block at 93.2oC. Using constant specific heats evaluated at 300 K, determine the total entropy production (kJ/K) after an hour assuming thermal equilibrium is achieved. 2. Correct Answer: 8.0087 ± 0.1% Steam at 1 MPa, 593.2oC, expands in a turbine to 0.01 MPa. If the process is isentropic, find the specific...

  • 5. A rigid tank initially contains 10 kg O2 at 200 kPa and 600 K. Now...

    5. A rigid tank initially contains 10 kg O2 at 200 kPa and 600 K. Now O2 is gradually cooled under constant volume until its temperature reaches 455 K. (18 Points) (a) Calculate the pressure of O2 at final state. (4 points) (b) Determine the boundary work. (6 points) (b) Calculate the heat transfer during this process. (8 Points) let me know if u want the property table MAE 320 - Thermodynamics + > e ecampus.wvu.edu/bbcswebdav/pid-6846897-dt-content-rid-82617141 1/courses/star50314.202005/MAE320-2020-Summer-HW04.pdf Q4 to Q6...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT