Question

1. (8 points) Suppose a particular discrete-time linear and time-invariant (LTI) system has frequency response H(e) and that

Explain how fourier transform is done?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ncn? 2 cos X Lejve) =2TT ó(w-Ę) t 27T. иcew) 3e sw 3 Cosw) + 3j Sin(-E w) Hle jw) = 3cos 3j am( sin 12scos (관) Re (Hieiw)) 3ces - 2.994 Im CHieie)) ( 판) - 3 Sin 12 - -0.04306Exp lanatron cos of DTFT weknow Ź e-jwn -n; -jwn jun и 2 17 dlw-T and DTFT, cos

Add a comment
Know the answer?
Add Answer to:
Explain how fourier transform is done? 1. (8 points) Suppose a particular discrete-time linear and time-invariant...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. Consider the magnitude and phase of the frequency response Hi(2) of a linear and time-invariant...

    4. Consider the magnitude and phase of the frequency response Hi(2) of a linear and time-invariant (LTI) discrete-time System 1, given for-r < Ω-T, as: H, (12)| 10 phase H1(Ω)--0 for all Ω (a) Suppose an 5cos(n s input to System 1. Find the output ya[n] (b) Suppose ancos(is input to System 1. Find the output ybn] (c) Suppose I take the discrete-time signal from part (a): xa[n] 5cos(n), but I remove half of the values: to arrive at a...

  • Q8) Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n...

    Q8) Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n] and output y[n] described by bx[n-21- ax[n-3 for n 2 0, where a and b are real-valued positive coefficients. A) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? B) What are the initial conditions and their values? Why? C) Draw the block diagram of the filter relating input x[n] and output y[n] D) Derive a formula for the transfer function in...

  • Problem 9.5 (Superposition input) A linear time-invariant system has frequency response The input...

    Problem 9.5 (Superposition input) A linear time-invariant system has frequency response The input to the system is zin] = 5 + 20 cos(0.5mn + 0.25m) + 108[n-3]. Use superposition to determine the corresponding output vin] of the LTI system for-oo < nく00. Problem 9.5 (Superposition input) A linear time-invariant system has frequency response The input to the system is zin] = 5 + 20 cos(0.5mn + 0.25m) + 108[n-3]. Use superposition to determine the corresponding output vin] of the LTI...

  • Consider the discrete-time periodic signal n- 2 (a) Determine the Discrete-Time Fourier Series (DTFS) coefficients ak...

    Consider the discrete-time periodic signal n- 2 (a) Determine the Discrete-Time Fourier Series (DTFS) coefficients ak of X[n]. (b) Suppose that x[n] is the input to a discrete-time LTI system with impulse response hnuln - ]. Determine the Fourier series coefficients of the output yn. Hint: Recall that ejIn s an eigenfunction of an LTI system and that the response of the system to it is H(Q)ejfhn, where H(Q)-? h[n]e-jin

  • Problem 5.3 (20 Points) A discrete-time, linear time-invariant system H is formed by ar- ranging three...

    Problem 5.3 (20 Points) A discrete-time, linear time-invariant system H is formed by ar- ranging three individual LTI systems as shown below. LTI LII System 1 System 2 n] > >yn] ATI System 3 Figure 2: The cascaded LTI system H. The frequency response of the individual system H, is as follows: H2 : H el) = -1 + 2e- ja The impulse response of the other individual systems are as follows: Huhn = 0[n] - [n - 1] +...

  • 6. (15) Consider the following causal linear time-invariant (LTT) discrete-time filter with input in and output...

    6. (15) Consider the following causal linear time-invariant (LTT) discrete-time filter with input in and output yn described by y[n] = x[n] – rn - 2 for n 20 . Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? • What are the initial conditions and their values for this causal and linear time-invariant system? Why? • Draw the block diagram of the filter relating input x[n) and output y[n] • Derive a formula for...

  • For a continuous time linear time-invariant system, the input-output relation is the following (x(t) the input, y(t) the...

    For a continuous time linear time-invariant system, the input-output relation is the following (x(t) the input, y(t) the output): , where h(t) is the impulse response function of the system. Please explain why a signal like e/“* is always an eigenvector of this linear map for any w. Also, if ¥(w),X(w),and H(w) are the Fourier transforms of y(t),x(t),and h(t), respectively. Please derive in detail the relation between Y(w),X(w),and H(w), which means to reproduce the proof of the basic convolution property...

  • Problem 1 You are given the discrete-time LTI system with impulse response, Calculate the Fourier series coefficients o...

    Problem 1 You are given the discrete-time LTI system with impulse response, Calculate the Fourier series coefficients of the output of this system when the input is x[n] = cos(n+π) Problem 1 You are given the discrete-time LTI system with impulse response, Calculate the Fourier series coefficients of the output of this system when the input is x[n] = cos(n+π)

  • solve all 22. The input-output relationship for a linear, time-invariant system is described by differential equation...

    solve all 22. The input-output relationship for a linear, time-invariant system is described by differential equation y") +5y'()+6y(1)=2x'()+x(1) This system is excited from rest by a unit-strength impulse, i.e., X(t) = 8(t). Find the corresponding response y(t) using Fourier transform methods. 23. A signal x(1) = 2 + cos (215001)+cos (210001)+cos (2.15001). a) Sketch the Fourier transform X b) Signal x() is input to a filter with impulse response (1) given below. In each case, sketch the associated frequency response...

  • Q.5 (a) Show that a linear, time-invariant, discrete-time system is stable in the bounded- input bounded-output...

    Q.5 (a) Show that a linear, time-invariant, discrete-time system is stable in the bounded- input bounded-output sense if, and only if the unit sample response of the system, h[n], is absolutely summable, that is, Alfa]]<00 | [n]| < do ***** (13 marks] (b) Consider a linear, time-invariant discrete-time system with unit sample response, hin), given by hin] = a[n] – đặn – 3 where [n] is the unit sample sequence. (1) Is the system stable in the bounded-input bounded-output sense?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT