Question

2. In many mechanical positioning systems there is flexibility between one part of the system and another. The figure below d

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
2. In many mechanical positioning systems there is flexibility between one part of the system and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • s) Given the following rotational mechanical system, hot relates the input variable T (applied torque) to...

    s) Given the following rotational mechanical system, hot relates the input variable T (applied torque) to the output a) Write the differential equation that re variable angular displacement) b) Convert the differential equatio c) Write the Transfer function of the system (I. w ent the differential equation to Laplace domain assuming initial conditions Zero Consider the following values for the parameters: J - 2 kg-m? (moment of inertial of the mass) D = 0.5 N-m-s/rad (coefficient of friction) K-1 N-m/rad...

  • Consider a causal, linear and time-invariant system of continuous time, with an input-output relation that obeys...

    Consider a causal, linear and time-invariant system of continuous time, with an input-output relation that obeys the following linear differential equation: y(t) + 2y(t) = x(t), where x(t) and y(t) stand for the input and output signals of the system, respectively, and the dot symbol over a signal denotes its first-order derivative with respect to time t. Use the Laplace transform to compute the output y(t) of the system, given the initial condition y(0-) = V2 and the input signal...

  • Consider the differential equation y(t) + 69(r) + 5y( Q3. t)u(t), where y(0) (0)0 and iu(t) is a ...

    Matlab code for the following problems. Consider the differential equation y(t) + 69(r) + 5y( Q3. t)u(t), where y(0) (0)0 and iu(t) is a unit step. Deter- mine the solution y(t) analytically and verify by co-plotting the analytic solution and the step response obtained with the step function. Consider the mechanical system depicted in Figure 4. The input is given by f(t), and the output is y(t). Determine the transfer function from f(t) to y(t) and, using an m-file, plot...

  • u(t) ta(t) e(t) A DC motor is a electro-mechanical system, where mechanical motor is coupled with...

    u(t) ta(t) e(t) A DC motor is a electro-mechanical system, where mechanical motor is coupled with an electrical circuit. The motor shows up in the circuit equation as a voltage loss proportional to the motor speed, and the electrical system shows up as the input torque proportional to the armatura current DC motor equations are given by dw(t) dialt) where J is the mass moment of inertia in kg-m2, b is the damping coefficient in N-m-s, K is the motor...

  • Problem 2: (40 pts) Part A: (20pts) A third-order system has an of Y(s)-L[y(t) corresponding to...

    Problem 2: (40 pts) Part A: (20pts) A third-order system has an of Y(s)-L[y(t) corresponding to a unit step input u(t) is known to be input of u(t) and an output of y(t). The forced response portion 1 Ys) (3 +3s2+ 4s +5) = a) Determine the input-output differential equation for the system b) From your result in a), determine the transformed free response Yee (s) corresponding to initial conditions of: y(0)= y(0) = 0 and ý(0)-6 Part B (20pts)...

  • Electro-Mechanical Systems The electro-mechanical system shown below consists of an electric motor with input voltage V,...

    Electro-Mechanical Systems The electro-mechanical system shown below consists of an electric motor with input voltage V, which drive inertia I in the mechanical system (see torque T). Find the governing differential equations of motion for this electro-mechanical system in terms of the input voltage to the motor and output displacement y. Electrical System L > Vbac Voac Motor I - Motor Input Voltage Vpac - Motor Back EMF = Kas 0 0 - Motor Angular Velocity I - Motor Output...

  • Problem 1 (25 points): Consider a system described by the differential equation: +0)-at)y(t) = 3ú(1); where...

    Problem 1 (25 points): Consider a system described by the differential equation: +0)-at)y(t) = 3ú(1); where y) is the system output, u) is the system input, and a(t)is a function of time t. o) (10 points): Is the system linear? Why? P(15 points): Ifa(t) 2, find the state space equations?

  • Problem 1: The system in Figure 1 comprises two masses connected to one another through a...

    Problem 1: The system in Figure 1 comprises two masses connected to one another through a spring. The block slides without friction on the support and has mass mi. The disk has radius a, mass moment of inertia I, and mass m2. The disk rolls without slipping on the support. The springs are unstretched when x(t) = x2(t) = 0. 2k 3k , m Figure 1: System for Problem 1 (a) Derive the differential equations of motion for the system...

  • 3. (l’+2° +1²=4') Topic: Laplace transform, CT system described by differential equations, LTI system properties. Consider...

    3. (l’+2° +1²=4') Topic: Laplace transform, CT system described by differential equations, LTI system properties. Consider a differential equation system for which the input x(t) and output y(t) are related by the differential equation d’y(t) dy(t) -6y(t) = 5x(t). dt dt Assume that the system is initially at rest. a) Determine the transfer function. b) Specify the ROC of H(s) and justify it. c) Determine the system impulse response h(t).

  • Consider the system given below. The output is y(displacement from equilibrium position) and the input is...

    Consider the system given below. The output is y(displacement from equilibrium position) and the input is V. (source voltage). The motor has an electrical constant Ke, a torque constant K, an armature inductance Lg and a resistance R. The rotor, shaft and disk together have inertia J and a viscous friction coefficient B. The disk has a radius ofr. (For the motor, assume that the torque is T = Ki,, and the back EMF is emf = KO). a. Derive...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT