Question

An expansion process on a monotomic ideal gas ( Cv= 3/2 R), has a linear path...

An expansion process on a monotomic ideal gas ( Cv= 3/2 R), has a linear path between the initial and final coodinates on a pV diagram. The coordinates of the initial state are: the pressure is 300 kPa, the volume is 0.07 m^3, and the temperature is 390 K. The final pressure is 130 kPa and the final temperature is 310 K. The work done by the gas, in SI units, is closest to:
Please explain step by step. Thank you

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An expansion process on a monotomic ideal gas ( Cv= 3/2 R), has a linear path...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Twenty moles of a monatomic ideal gas (γ = 5/3) undergo an adiabatic process. The initial...

    Twenty moles of a monatomic ideal gas (γ = 5/3) undergo an adiabatic process. The initial pressure is 400 kPa and the initial temperature is 450 K. The final temperature of the gas is 320 K. In the situation above, the final volume of the gas, in SI units, is closest to: 0.19 0.35 0.23 0.27 0.31

  • 2) Calculate w for the adiabatic expansion of 2.50 mol of an ideal gas at an...

    2) Calculate w for the adiabatic expansion of 2.50 mol of an ideal gas at an initial pressure of 2.25 bar from an initial temper- ature of 450. K to a final temperature of 300. K. Write an expression for the work done in the isothermal reversible expan- sion of the gas at 300. K from an initial pressure of 2.25 bar. What value of the final pressure would give the same value of w as the first part of...

  • Twenty moles of a monatomic ideal gas (? = 5/3) undergo an adiabatic process. The initial...

    Twenty moles of a monatomic ideal gas (? = 5/3) undergo an adiabatic process. The initial pressure is 400 kPa and the initial temperature is 450 K. The final temperature of the gas is 320 K. In the situation above, the change in the internal energy of the gas, in kJ, is closest to:

  • A 2.00 mol sample of an ideal gas with a molar specific heat of CV =...

    A 2.00 mol sample of an ideal gas with a molar specific heat of CV = 5 2 R always starts at pressure 1.50 ✕ 105 Pa and temperature 250 K. For each of the following processes, determine the final pressure (Pf, in kPa), the final volume (Vf, in L), the final temperature (Tf, in K), the change in internal energy of the gas (ΔEint, in J), the energy added to the gas by heat (Q, in J), and the...

  • 6. (25 points) One mole of a monatomic ideal gas, initially at pressure P1 = 105...

    6. (25 points) One mole of a monatomic ideal gas, initially at pressure P1 = 105 Pa and temperature T1 = 273 K undergoes an isovolumetric process in which its pressure falls to half its initial value. a) What is the work done by the gas? What is the final temperature? b) The gas then expands isobarically (constant pressure) to twice its initial volume. What is the work done by the gas? What is the final temperature? c) Draw a...

  • 1.95 mol of an ideal gas with CV = 3R/2 undergoes the following transformations from an...

    1.95 mol of an ideal gas with CV = 3R/2 undergoes the following transformations from an initial state T = 290 K, P = 1.000 bar. Find q, w, ∆U, ∆H and ∆S for each transformation. a) A reversible adiabatic compression until the final temperature reaches 390 K.

  • A monatomic ideal gas undergoes isothermal expansion from 0.08 m3 to 0.22 m3 at a constant...

    A monatomic ideal gas undergoes isothermal expansion from 0.08 m3 to 0.22 m3 at a constant temperature (initial pressure is 310 kPa). What are its (a) internal energy change (ΔEΔE), (b) net heat transfer (Q), and (c) net work done (W)? Use negative quantity for heat transfer out of the system or work done on the system.

  • Please help me about Physics, Thanks. A sample of 1.00 mole of a diatomic ideal gas...

    Please help me about Physics, Thanks. A sample of 1.00 mole of a diatomic ideal gas is intially at temperature 265K........... Thermodynamic Processes involving Ideal Gases-in-class worksheet-(5 points) PHYS 181 Question B (B.) A sample of 1.00 mole of a diatomic ideal gas is initially at temperature 265 K and volume 0.200 m. The gas first undergoes an isobaric expansion, such that its temperature increases by 120.0 K. It then undergoes an adiabatic expansion so that its final volume is...

  • 2 a) An ideal gas with a Cv of 1.5R independent of temperature is initially contained...

    2 a) An ideal gas with a Cv of 1.5R independent of temperature is initially contained in a volume of 0.05 L at a pressure of 10 atm and an initial temperature of 1200°C. The volume is then increased to 0.50 L. What will be the final pressure and temperature of the gas if the total amount of gas is unchanged, and the gas undergoes reversible adiabatic expansion? How much work will be produced? Calculate the change in entropy of...

  • Two moles of an ideal gas undergo an isothermal expansion at 565 K from a pressure...

    Two moles of an ideal gas undergo an isothermal expansion at 565 K from a pressure of 12.5 Bar to a final pressure of 1.50 Bar. Calculate AU, AH, and AS for the process if Cy = R. The same ideal gas undergoes an adiabatic expansion from the same initial pressure to the same final pressure (and the same initial temperature). Calculate the final temperature, AU, AH, and AS for the process.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT