Question

Problem 3: Time-Independent Perturbation Theory Consider the particle in a 1D box of size L, as in Fig. 3. A perturbation of the form. V,δ ((x-2)2-a2) with a < L is applied to the unperturbed Hamiltonian of the 1D particle in a box (solutions on the equation sheet). Here V is a constant with units of energy. Remember the following propertics of the Dirac delta function m,f(x)6(x-a)dx f(a) 6(az) が(z) = = ds( dz E, or Ψ(x)-En 10 0.0 0.2 0.4 0.6 0.8 1.0 Figure 3: Particle in a box of size L in 1D. The first three energies E(O) eigenfunctions |n(0)) are illustrated (n 1,2,3). The unit for z is L. and (a)[9 pts] Caleulate Ef for this perturbed problem. (b)[9 pts] Calculate Ex for this perturbed problem.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(aJsound state con vett rotfeo) S13 2 V 虹)22 L Jo

Add a comment
Know the answer?
Add Answer to:
Problem 3: Time-Independent Perturbation Theory Consider the particle in a 1D box of size L, as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. (30 points) Harmonic oscillator with perturbation Recall the Hamiltonian of an harmonic oscillator in 1D:...

    4. (30 points) Harmonic oscillator with perturbation Recall the Hamiltonian of an harmonic oscillator in 1D: p21 ÃO = + mwf?, where m is the mass of the particle and w is the angular frequency. Now, let us perturb the oscillator with a quadratic potential. The perturbation is given by Î' = zgmw?h?, where g is a dimensionless constant and g <1. (a) Write down the eigen-energies of the unperturbed Hamiltonian. (b) In Lecture 3, we introduced the lowering (or...

  • 8. Consider one electron in a 1D box of side L. Its wavefunction is given by...

    8. Consider one electron in a 1D box of side L. Its wavefunction is given by V3 V3 2V3i where ф1(x), фг(x), and фз(x) are the first 3 eigenfunctions of the Hamiltonian, A, of a particle in a 1D box, h2 d2 a) Is Ψ(x) normalized? If it is not normalized it, normalize it! b) Is ų (x) an eigenfunction of A? If it is an eigenfunction, what is the eigenvalue?

  • 8. Consider one electron in a 1D box of side L. Its wavefunction is given by...

    8. Consider one electron in a 1D box of side L. Its wavefunction is given by из where ф1(x), фг(x), and фз(x) are the first 3 eigenfunctions of the Hamiltonian, H, of a particle in a 1D box, 2m dx2 a) Is Ψ(x) normalized? If it is not normalized it, normalize it! b) Is Ψ(x) an eigenfunction of A? If it is an eigenfunction, what is the 9. A linear polyene contains 8 -electrons, and absorbs light with412 nm. b)...

  • Consider a perturbed particle in a box, with potential energy: for x <-L/2 2brx/L for -1/2sxSL2 for x >L/2 nd confining the zero order functions to n-1,2, 3, 4 (i.e. the lowest four Using M...

    Consider a perturbed particle in a box, with potential energy: for x <-L/2 2brx/L for -1/2sxSL2 for x >L/2 nd confining the zero order functions to n-1,2, 3, 4 (i.e. the lowest four Using Matrix algebra, and confining the zero order functions to n solutions to the unperturbed particle in a box problem) determine the energy of the l (Hint: In diagonalizing a matrix, you may reorder the quantum numbers in any way you like). d) Consider a perturbed particle...

  • Please finish this question with step-by-step details, thx! Consider one electron in a 1D box of...

    Please finish this question with step-by-step details, thx! Consider one electron in a 1D box of side L. Its wavefunction is given by V3 /3 A. where φ1(x),P2(x), and φ3(x) are the first 3 eigenfunctions of the Hamiltonian, H, of a particle in a 1D box, h2 d2 2mdx2 Az- a) ls (x) normalized? If it is not normalized it, normalize it! b) is Ψ(x) an eigenfunction of H? If it is an eigenfunction, what is the eigenvalue?

  • 4. (20 points). 5-function perturbation. Consider a particle in a one-dimensional infinite square well with boundaries...

    4. (20 points). 5-function perturbation. Consider a particle in a one-dimensional infinite square well with boundaries at x--a and x-a. We introduce the following δ-function perturbation at V'(x) 00(z). a. Compute the first-order corrections to the energies of the particle induced by the perturbation b. Recall that you solved this problem exactly in problem set 4 (Griffiths 2.43). Compare your perturbation theory result to the exact solution

  • Particle with a speed bump Consider our old friend the 1D particle in the box, except...

    Particle with a speed bump Consider our old friend the 1D particle in the box, except now with a speed bump in the box so the potential now is given by L and L < x < L 0, Vo 0 x V (x) otherwise (a) Calculate the first order correction to the ground state (n = 1) and first excited state (n = 2) energies (b) Calculate the first order correction to the ground state wave function in terms...

  • 3. Consider a free particle on a circle. That is, consider V(z) = 0 and wave...

    3. Consider a free particle on a circle. That is, consider V(z) = 0 and wave functions Ψ(z, t) which are periodic functions of z: Ψ(z,t) = Ψ(z + L, t). a) Solve the Time-Independent Schroedinger equation. For each allowed energy, En, you will find two solutions, (s). Why does this not contradict the theorem that we proved in class about the non-degeneracy of the solutions to the TISE in one dimension? b) Start with the initial condition Ψ(z,0) sin2(nz/L)....

  • Consider a particle confined in two-dimensional box with infinite walls at x 0, L;y 0, L. the dou...

    quantum mechanics Consider a particle confined in two-dimensional box with infinite walls at x 0, L;y 0, L. the doubly degenerate eigenstates are: Ιψη, p (x,y))-2sinnLx sinpry for 0 < x, y < L elsewhere and their eigenenergies are: n + p, n, p where n, p-1,2, 3,.... Calculate the energy of the first excited state up to the first order in perturbation theory due to the addition of: 2 2 Consider a particle confined in two-dimensional box with infinite...

  • 17.1) Show that the retarded field propagator for a free particle in momentum space and the time ...

    additional info 17.1) Show that the retarded field propagator for a free particle in momentum space and the time domain: given by θ(te-ty)e-i(Epte-Eqty's(3) (p-q) 17.1 The field propagntor in outline e field propagator in outline 155 he field propagator involves a simple thought experi- our interacting system in its ground state, which we interactin ent. We start with denote w 12). The thought experiment works as follows: we introdu extra particle of our choice the system. point ( in anni...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT