Question

The displacement of a string of tension 20 N is given by: y(x,t)=0.04sin(270x - 607). Determine: the direction of the wave th

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ylu,t) = 0.04 Sin (2152 – 60 15 t) (a) since phase is constant, 2700 - Gott =0 , x t 30 - hence wave is travelling in (+ve) x

Add a comment
Know the answer?
Add Answer to:
The displacement of a string of tension 20 N is given by: y(x,t)=0.04sin(270x - 607). Determine:...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The vertical displacement y(x,t) of a string stretched along the horizontal x-axis is given by y(x,t)...

    The vertical displacement y(x,t) of a string stretched along the horizontal x-axis is given by y(x,t) = (6.00 mm) sin[(3.25 rad/m) x - (7.22 rad/s)t]. First, determine the constant speed of this wave. Next, calculate the instantaneous speed of a particle of the string located at x = 1.25 m at the time of 10.00 s. Finally take the constant speed of the wave and divide by the instantaneous speed of the particle that you determined. Watch your units -...

  • The equation of a transverse wave traveling along a very long string is given by y...

    The equation of a transverse wave traveling along a very long string is given by y = 6.1 sin(0.018πx + 3.1πt), where x and y are expressed in centimeters and t is in seconds. Determine the following values. (a) the amplitude cm (b) the wavelength cm (c) the frequency Hz (d) the speed cm/s (e) the direction of propagation of the wave +x−x    +y−y (f) the maximum transverse speed of a particle in the string cm/s (g) the transverse displacement at...

  • 3. The vertical displacement of a string is given by the harmonic function: Y(x, t) =...

    3. The vertical displacement of a string is given by the harmonic function: Y(x, t) = 3.5cos(12nt-187x) Where x is the horizontal distance along the string in meters. Suppose a tiny particle were attached to the string at x=5cm. obtain the expression for the vertical velocity of the particle as a function of time.

  • A sinusoidal transverse wave is traveling along a string in the negative direction of an x...

    A sinusoidal transverse wave is traveling along a string in the negative direction of an x axis. The figure below shows a plot of the displacement as a function of position at time t = 0. The x axis is marked in increments of 10 cm and the y axis is marked in increments of 2 cm. The string tension is 3.1 N, and its linear density is 34 g/m. (a) Find the amplitude. m (b) Find the wavelength. m...

  • To practice Problem-Solving Strategy 15.1 Mechanical Waves. Waves on a string are described by the following...

    To practice Problem-Solving Strategy 15.1 Mechanical Waves. Waves on a string are described by the following general equation y(x,t)=Acos(kx−ωt). A transverse wave on a string is traveling in the +x direction with a wave speed of 7.50 m/s , an amplitude of 9.00×10−2 m , and a wavelength of 0.550 m . At time t=0, the x=0 end of the string has its maximum upward displacement. Find the transverse displacement y of a particle at x = 1.40 m and...

  • The wave function for a standing wave on a string is described by y(x, t) =...

    The wave function for a standing wave on a string is described by y(x, t) = 0.016 sin(4πx) cos (57πt), where y and x are in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x = 0.10 m ymax =  m vmax =  m/s (b) x = 0.25 m ymax =  m vmax =  m/s (c) x = 0.30 m ymax =  m vmax =  m/s (d) x = 0.50...

  • The equation of a transverse wave traveling along a very long string is y = 3.96...

    The equation of a transverse wave traveling along a very long string is y = 3.96 sin(0.0444πx+ 7.89πt), where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 1.05 cm when t = 0.843 s?

  • A wave on a string is described by y(x,t)=( 2.0 cm )×cos[2π(x/( 3.6 m )+t/( 0.20...

    A wave on a string is described by y(x,t)=( 2.0 cm )×cos[2π(x/( 3.6 m )+t/( 0.20 s ))] , where x is in m and t is in s. A)In what direction is this wave traveling? Negative B)What is the wave speed? 18 m/s C)What is the wave frequency? Hz D)What is the wave length? m E)At t = 0.50 s , what is the displacement of the string at x = 0.30 m ? cm

  • The displacement of a transverse traveling wave on a string under tension is described by: D(x,...

    The displacement of a transverse traveling wave on a string under tension is described by: D(x, t) = (2.0 cm) .sin((12.57 rad/m)x + (638 rad/s)t + /2] The linear density of the string is 5.00 g/m. 1. What is the tension in the string? 2. What is the maximal speed of a point on the string? String 2 3. The original string (String 1) is tied to a second string with String 1 a linear density of 12 g/m, as...

  • The displacement of a transverse traveling wave on a string under tension is described by: D(x,...

    The displacement of a transverse traveling wave on a string under tension is described by: D(x, t) = (2.0 cm) sin((12.57 rad/m)x+ (638 rad/s)t + T/2] The linear density of the string is 5.00 g/m. 1. What is the tension in the string? 2. What is the maximal speed of a point on the string? String 2 3. The original string (String 1) is tied to a second string with String 1 a linear density of 12 g/m, as shown...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT