Question

A +6.00 -μC point charge is moving at a constant 8.00×106 m/s in the + y-direction,...

A +6.00 -μC point charge is moving at a constant 8.00×106 m/s in the + y-direction, relative to a reference frame. At the instant when the point charge is at the origin of this reference frame, what is the magnetic-field vector it produces at the following points.

Part A: x = +.5 m, y = 0 m, z = 0 m

Part B: x = 0 m, y = -.5 m, z = 0 m

Part C: x = 0 m, y = 0 m, z = +.5 m

Part D: x = 0 m, y = -.5 m, z = +.5 m

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1
Concepts and reason

The required concepts to solve these questions are Biot-Savart law, direction of the magnetic field and the general rule of the cross product.

Biot-Savart Law: This law is used to determine the magnitude and direction of the magnetic field produced. Magnetic field is produced by a moving charge.

Calculate the magnetic field by using the Biot-Savart law at different points.

init

Fundamentals

The expression for Biot-Savart law is given by,

B=μ04πqv×r^r2\vec B = \frac{{{\mu _0}}}{{4\pi }}\frac{{q\vec v \times \hat r}}{{{r^2}}}

Here,qqis the charge, rris the magnitude of the displacement vector, μ0{\mu _0}is the permeability and r^\hat r is the unit vector andvv is the velocity.

The expression of the unit vector can be written as,

r^=rr\hat r = \frac{{\vec r}}{{\left| {\vec r} \right|}}

Here, r^\hat ris the unit vector.

(a)

The expression for Biot-Savart law is given by,

B=μ04πqv×r^r2\vec B = \frac{{{\mu _0}}}{{4\pi }}\frac{{q\vec v \times \hat r}}{{{r^2}}}

Substitute rr\frac{{\vec r}}{{\left| {\vec r} \right|}} for r^\hat rin the above equation.

B=μ04πqv×rr3\vec B = \frac{{{\mu _0}}}{{4\pi }}\frac{{q\vec v \times \vec r}}{{{r^3}}} …… (1)

At x=+0.5mx = + 0.5{\rm{ m}}, the displacement vector is,

r=(0.5m)i+0j+0k\vec r = \left( {0.5{\rm{ m}}} \right)\vec i + 0\vec j + 0\vec k

The magnitude of displacement vector is,

r=(0.5m)2+02+02=0.5m\begin{array}{c}\\r = \sqrt {{{\left( {0.5{\rm{ m}}} \right)}^2} + {0^2} + {0^2}} \\\\ = 0.5{\rm{ m }}\\\end{array}

Substitute 4π×107NA24\pi \times {10^{ - 7}}{\rm{ N}} \cdot {{\rm{A}}^{ - 2}} for μ0{\mu _0} , 6μC6{\rm{ \mu C}}forqq, (8×106ms1)j\left( {8 \times {{10}^6}{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\vec jfor v\vec v, 0.5m0.5{\rm{ m }} for rr and (0.5m)i\left( {0.5{\rm{ m}}} \right)\vec i forr\vec r in the equation (1).

B=(4π×107NA24π)(6μC)(1C106μC)((8×106ms1)j×(0.5m)i(0.5m)3)=(107NA2)(6×106C)((4×106m2s2)(k)0.125m3)=1.92×105T(k)=(0T)i+(0T)j(1.92×105T)k\begin{array}{c}\\\vec B = \left( {\frac{{4\pi \times {{10}^{ - 7}}{\rm{ N}} \cdot {{\rm{A}}^{ - 2}}}}{{4\pi }}} \right)\left( {6{\rm{ \mu C}}} \right)\left( {\frac{{1{\rm{ C}}}}{{{{10}^6}{\rm{ \mu C}}}}} \right)\left( {\frac{{\left( {8 \times {{10}^6}{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\vec j \times \left( {0.5{\rm{ m}}} \right)\vec i}}{{\left( {0.5{\rm{ m}}} \right){{\rm{ }}^3}}}} \right)\\\\ = \left( {{{10}^{ - 7}}{\rm{ N}} \cdot {{\rm{A}}^{ - 2}}} \right)\left( {6 \times {{10}^{ - 6}}{\rm{ C}}} \right)\left( {\frac{{\left( {4 \times {{10}^6}{\rm{ }}{{\rm{m}}^2} \cdot {{\rm{s}}^{ - 2}}} \right)\left( { - \vec k} \right)}}{{0.125{\rm{ }}{{\rm{m}}^3}}}} \right)\\\\ = 1.92 \times {10^{ - 5}}\,{\rm{T}}\left( { - \vec k} \right)\\\\\, = \left( {0{\rm{ T}}} \right)\vec i + \left( {0{\rm{ T}}} \right)\vec j - \left( {1.92 \times {{10}^{ - 5}}\,{\rm{T}}} \right)\vec k\\\end{array}

(b)

Use equation (1) to calculate the magnetic field at point y=0.5my = - 0.5{\rm{ m}}.

B=μ04πqv×rr3\vec B = \frac{{{\mu _0}}}{{4\pi }}\frac{{q\vec v \times \vec r}}{{{r^3}}}

The displacement vector is,

r=0i+(0.5m)j+0k\vec r = 0\vec i + \left( { - 0.5{\rm{ m}}} \right)\vec j + 0\vec k

The magnitude of displacement vector is,

r=02+(0.5m)2+02=0.5m\begin{array}{c}\\r = \sqrt {{0^2} + {{\left( { - 0.5{\rm{ m}}} \right)}^2} + {0^2}} \\\\ = 0.5{\rm{ m}}\\\end{array}

Substitute 4π×107NA24\pi \times {10^{ - 7}}{\rm{ N}} \cdot {{\rm{A}}^{ - 2}} for μ0{\mu _0} , 6μC6{\rm{ \mu C}}forqq, (8×106ms1)j\left( {8 \times {{10}^6}{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\vec jfor v\vec v, 0.5m0.5{\rm{ m }} for rr and (0.5m)j\left( { - 0.5{\rm{ m}}} \right)\vec j forr\vec r in the equation (1).

B=(4π×107NA24π)(6μC)(1C106μC)((8×106ms1)j×(0.5m)j(0.5m)3)=(0T)i+(0T)j+0k\begin{array}{c}\\\vec B = \left( {\frac{{4\pi \times {{10}^{ - 7}}{\rm{ N}} \cdot {{\rm{A}}^{ - 2}}}}{{4\pi }}} \right)\left( {6{\rm{ \mu C}}} \right)\left( {\frac{{1{\rm{ C}}}}{{{{10}^6}{\rm{ \mu C}}}}} \right)\left( {\frac{{\left( {8 \times {{10}^6}{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\vec j \times \left( { - 0.5{\rm{ m}}} \right)\vec j}}{{\left( {0.5{\rm{ m}}} \right){{\rm{ }}^3}}}} \right)\\\\ = \left( {0{\rm{ T}}} \right)\vec i + \left( {0{\rm{ T}}} \right)\vec j + 0\vec k\\\end{array}

(c)

Use equation (1) to calculate the magnetic field at point z=0.5mz = 0.5{\rm{ m}}.

B=μ04πqv×rr3\vec B = \frac{{{\mu _0}}}{{4\pi }}\frac{{q\vec v \times \vec r}}{{{r^3}}}

The displacement vector is,

r=0i+0j+(0.5m)k\vec r = 0\vec i + 0\vec j + \left( {0.5{\rm{ m}}} \right)\vec k

The magnitude of displacement vector is,

r=02+02+(0.5m)2=0.5m\begin{array}{c}\\r = \sqrt {{0^2} + {0^2} + {{\left( {0.5{\rm{ m}}} \right)}^2}} \\\\ = 0.5{\rm{ m}}\\\end{array}

Substitute 4π×107NA24\pi \times {10^{ - 7}}{\rm{ N}} \cdot {{\rm{A}}^{ - 2}} for μ0{\mu _0} , 6μC6{\rm{ \mu C}}forqq, (8×106ms1)j\left( {8 \times {{10}^6}{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\vec jfor v\vec v, 0.5m0.5{\rm{ m }} for rr and (0.5m)k\left( {0.5{\rm{ m}}} \right)\vec k forr\vec r in the equation (1).

B=(4π×107NA24π)(6μC)(1C106μC)((8×106ms1)j×(0.5m)k(0.5m)3)=(1.92×105T)i+(0T)j+(0T)k\begin{array}{c}\\\vec B = \left( {\frac{{4\pi \times {{10}^{ - 7}}{\rm{ N}} \cdot {{\rm{A}}^{ - 2}}}}{{4\pi }}} \right)\left( {6{\rm{ \mu C}}} \right)\left( {\frac{{1{\rm{ C}}}}{{{{10}^6}{\rm{ \mu C}}}}} \right)\left( {\frac{{\left( {8 \times {{10}^6}{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\vec j \times \left( {0.5{\rm{ m}}} \right)\vec k}}{{\left( {0.5{\rm{ m}}} \right){{\rm{ }}^3}}}} \right)\\\\ = \left( {1.92 \times {{10}^{ - 5}}\,{\rm{T}}} \right)\vec i + \left( {0{\rm{ T}}} \right)\vec j + \left( {0{\rm{ T}}} \right)\vec k\\\end{array}

(d)

Use equation (1) to calculate the magnetic field at points x=0mx = 0{\rm{ m}},y=0.5my = - 0.5{\rm{ m}},z=+0.5mz = + 0.5{\rm{ m}}

B=μ04πqv×rr3\vec B = \frac{{{\mu _0}}}{{4\pi }}\frac{{q\vec v \times \vec r}}{{{r^3}}}

The displacement vector is,

r=0i+(0.5m)j+(0.5m)k\vec r = 0\vec i + \left( { - 0.5{\rm{ m}}} \right)\vec j + \left( {0.5{\rm{ m}}} \right)\vec k

The magnitude of displacement vector is,

r=02+(0.5m)2+(0.5m)2=0.707m\begin{array}{c}\\r = \sqrt {{0^2} + {{\left( {0.5{\rm{ m}}} \right)}^2} + {{\left( {0.5{\rm{ m}}} \right)}^2}} \\\\ = 0.707{\rm{ m}}\\\end{array}

Substitute 4π×107NA24\pi \times {10^{ - 7}}{\rm{ N}} \cdot {{\rm{A}}^{ - 2}} for μ0{\mu _0} , 6μC6{\rm{ \mu C}}forqq, (8×106ms1)j\left( {8 \times {{10}^6}{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\vec jfor v\vec v, 0.707m0.707{\rm{ m}} for rr and 0i+(0.5m)j+(0.5m)k0\vec i + \left( { - 0.5{\rm{ m}}} \right)\vec j + \left( {0.5{\rm{ m}}} \right)\vec k forr\vec r in the equation (1).

B=(4π×107NA24π)(6μC)(1C106μC)((8×106ms1)j×((0.5m)j+(0.5m)k)(0.707m)3)=(107NA2)(6×106C)((4×106m2s1)i0.353m3)=(6.79×106T)i+(0T)j+(0T)k\begin{array}{c}\\\vec B = \left( {\frac{{4\pi \times {{10}^{ - 7}}{\rm{ N}} \cdot {{\rm{A}}^{ - 2}}}}{{4\pi }}} \right)\left( {6{\rm{ \mu C}}} \right)\left( {\frac{{1{\rm{ C}}}}{{{{10}^6}{\rm{ \mu C}}}}} \right)\left( {\frac{{\left( {8 \times {{10}^6}{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\vec j \times \left( {\left( { - 0.5{\rm{ m}}} \right)\vec j + \left( {0.5{\rm{ m}}} \right)\vec k} \right)}}{{{{\left( {0.707{\rm{ m}}} \right)}^3}}}} \right)\\\\ = \left( {{{10}^{ - 7}}{\rm{ N}} \cdot {{\rm{A}}^{ - 2}}} \right)\left( {6 \times {{10}^{ - 6}}{\rm{ C}}} \right)\left( {\frac{{\left( {4 \times {{10}^6}{{\rm{m}}^2} \cdot {{\rm{s}}^{ - 1}}} \right)\vec i}}{{0.353{\rm{ }}{{\rm{m}}^3}}}} \right)\\\\ = \left( {6.79 \times {{10}^{ - 6}}\,{\rm{T}}} \right)\vec i + \left( {0{\rm{ T}}} \right)\vec j + \left( {0{\rm{ T}}} \right)\vec k\\\end{array}

Ans: Part a

The magnetic field at points x=+0.5mx = + 0.5{\rm{ m}}, y=0my = 0{\rm{ m}}, z=0mz = 0{\rm{ m}}are (0T)i+(0T)j(1.92×105T)k\left( {0{\rm{ T}}} \right)\vec i + \left( {0{\rm{ T}}} \right)\vec j - \left( {1.92 \times {{10}^{ - 5}}\,{\rm{T}}} \right)\vec k.

Part b

The magnetic field at points x=0mx = 0{\rm{ m}},y=0.5my = - 0.5{\rm{ m}},z=0mz = 0{\rm{ m}}are(0T)i+(0T)j+0k\left( {0{\rm{ T}}} \right)\vec i + \left( {0{\rm{ T}}} \right)\vec j + 0\vec k.

Part c

The magnetic field at points x=0mx = 0{\rm{ m}},y=0y = 0,z=0.5mz = 0.5{\rm{ m}}are (1.92×105T)i+(0T)j+(0T)k\left( {1.92 \times {{10}^{ - 5}}\,{\rm{T}}} \right)\vec i + \left( {0{\rm{ T}}} \right)\vec j + \left( {0{\rm{ T}}} \right)\vec k.

Part d

The magnetic field at points x=0mx = 0{\rm{ m}},y=0.5my = - 0.5{\rm{ m}},z=+0.5mz = + 0.5{\rm{ m}}are (6.79×106T)i+(0T)j+(0T)k\left( {6.79 \times {{10}^{ - 6}}\,{\rm{T}}} \right)\vec i + \left( {0{\rm{ T}}} \right)\vec j + \left( {0{\rm{ T}}} \right)\vec k.

Add a comment
Know the answer?
Add Answer to:
A +6.00 -μC point charge is moving at a constant 8.00×106 m/s in the + y-direction,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT