Question

The air from the pipe in Part B (i.e., the original pipe after being cut in...

The air from the pipe in Part B (i.e., the original pipe after being cut in half and closed off at one end) is replaced with helium. (The speed of sound in helium is about three times faster than in air.). What is the approximate new fundamental frequency?

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

Add a comment
Know the answer?
Add Answer to:
The air from the pipe in Part B (i.e., the original pipe after being cut in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 11. Consider an open PVC pipe that is 5 m long and has a fundamental frequency...

    11. Consider an open PVC pipe that is 5 m long and has a fundamental frequency of 70 Hz, open at both ends. a) If the pipe is cut in half, what is the new fundamental fre- quency? (include units) b) If after being cut in half in a), the pipe is closed off at one end, what is the new fundamental frequency? (include units) c) The speed of sound in helium is approximately 3 times faster than in air....

  • Part A: A certain organ pipe, open at both ends, produces a fundamental frequency of 300...

    Part A: A certain organ pipe, open at both ends, produces a fundamental frequency of 300 Hz in air. If the pipe is filled with helium at the same temperature, what fundamental frequency fHe will it produce? Take the molar mass of air to be 28.8 g/mol and the molar mass of helium to be 4.00 g/mol. I calculated this correctly to be 879 Hz, but I am not sure about the next part. Now consider a pipe that is...

  • Part A At T = 18 ∘C, how long must an open organ pipe be to...

    Part A At T = 18 ∘C, how long must an open organ pipe be to have a fundamental frequency of 349 Hz ? The speed of sound in air is v≈(331+0.60T)m/s, where T is the temperature in ∘C. Express your answer to three significant figures and include the appropriate units. l l = nothingnothing SubmitRequest Answer Part B If this pipe is filled with helium at 20∘C and 1 atm, what is its fundamental frequency? The speed of sound...

  • A certain organ pipe, open at both ends, produces a fundamental frequency of 290 Hz in...

    A certain organ pipe, open at both ends, produces a fundamental frequency of 290 Hz in air. If the pipe is filled with helium at the same temperature, what fundamental frequency f_He will it produce? Take the molar mass of air to be 28.8 g/mol and the molar mass of helium to be 4.00 g/mol Express your answer in hertz. Now consider a pipe that is stopped (i.e., closed at one end) but still has a fundamental frequency of 290...

  • A device emits a sound wave in helium gas which then travels into standard air of...

    A device emits a sound wave in helium gas which then travels into standard air of the same temperature. If the speed of sound in helium is about three times the speed of sound in standard air, which of the following is true? The frequency of sound decreases as the wave travels from helium to standard air while the wavelength increases. The frequency of the sound is unchanged as the wave travels from helium to standard air while the wavelength...

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz.    a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch write the wavelength for each pipe in terms of the pipe lengths LA...

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz. a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch, write the wavelength for each pipe in terms of the pipe lengths LA and...

  • #4 (will rate) 1) The fundamental frequency of a pipe that is open at both ends...

    #4 (will rate) 1) The fundamental frequency of a pipe that is open at both ends is 611 Hz. (Let the speed of sound be 344 m/s.) (a) How long is this pipe? (b) If one end is now closed, find the wavelength of the new fundamental. (c) If one end is now closed, find the frequency of the new fundamental. 2) A piano tuner stretches a steel piano wire with a tension of 800 N. The steel wire is...

  • a) 266.6k b)0.353m Standing Sound Waves (16.3.10) The resonating air column in the open-closed pipe shown...

    a) 266.6k b)0.353m Standing Sound Waves (16.3.10) The resonating air column in the open-closed pipe shown below is 0.635 m long. If the lowest frequency that can be produced by the pipe is 129 s'1, what is the temperature? The pipe is cut a distance d from the closed end (shown below by the dotted line) so that we now have two shorter pieces: an open-open piece and an open-dosed piece. If the second-lowest frequency that can be produced by...

  • The human ear canal has a typical length of about 2.2 cm and can be modeled...

    The human ear canal has a typical length of about 2.2 cm and can be modeled as a tube open at one end and closed at the eardrum. a) Calculate the fundamental frequency that humans should be expected to hear best. Assume that the speed of sound is 345 m/s in air. Looking deeply down your friends throat, or perhaps looking at a photograph, you observe the vocal tract. At the bottom of the vocal tract, when you aren't swallowing,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT