Question

Constant Pressure Process Oxygen (molar mass 32 kg/kmol) expands reversibly in a cylinder behind a piston at a constant press
0 0
Add a comment Improve this question Transcribed image text
Answer #1

0%TFr_ behave os pefeeta Constant presswro 2. 2Hest Supplied D·ラ

Add a comment
Know the answer?
Add Answer to:
Constant Pressure Process Oxygen (molar mass 32 kg/kmol) expands reversibly in a cylinder behind a piston...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Oxygen (molar mass 32 kg/mol) is compressed reversibly and polytropically in a cylinder from 1.05 bar,...

    Oxygen (molar mass 32 kg/mol) is compressed reversibly and polytropically in a cylinder from 1.05 bar, 15°C to 4.2 bar in such a way that one-third of the work input is rejected as heat to the cylinder walls. Calculate the final temperature of the oxygen. Assume oxygen to be a perfect gas and take cv = 0.649 kJ/kg.K.

  • 2 140 pt) Reversible Adiabatic Expansion of Nitrogen. Nitrogen expands reversibly in an insulated cylinder fitted...

    2 140 pt) Reversible Adiabatic Expansion of Nitrogen. Nitrogen expands reversibly in an insulated cylinder fitted with a piston. The N2 is initially at 500K and 5 bar pressure and expands to a final pressure of 1 bar. Determine the final temperature T of the N2 (in K) as well as the work done in the process W (mol), assuming N2 to be in the ideal gas state. Heat capacity, Cp is equal to a constant at 3.560R.

  • finding work and heat transfer given a piston-cylinder assembly

    As shown in Fig. P2.56, a gas contained within a piston–cylinder assembly, initially at a volume of 0.1 m3, undergoesa constant-pressure expansion at 2 bar to a final volume of0.12 m3, while being slowly heated through the base. Thechange in internal energy of the gas is 0.25 kJ. The pistonand cylinder walls are fabricated from heat-resistant material,and the piston moves smoothly in the cylinder. The localatmospheric pressure is 1 bar.(a) For the gas as the system, evaluate work and heat...

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • Problem 2. As shown in the figure, a gas contained within a piston-cylinder assembly, initially at...

    Problem 2. As shown in the figure, a gas contained within a piston-cylinder assembly, initially at a volume of 0.1 m3, undergoes a constant-pressure expansion at 2 bar to a final volume of 0.12 m3, while being slowly heated through the base. The change in internal energy of the gas is 0.25 kJ. The piston and cylinder walls are fabricated fronm heat-resistant material, and the piston moves smoothly in the cylinder. The local atmospheric pressure is 1 bar. (a) For...

  • As shown in the figure below, a gas contained within a piston-cylinder assembly, initially at a...

    As shown in the figure below, a gas contained within a piston-cylinder assembly, initially at a volume of 0.1 m3, undergoes a constant-pressure expansion at p 2 bar to a final volume of V2 0.2 m3, while being slowly heated through the base. The change in internal energy of the gas is 0.25 kJ. The piston and cylinder walls are fabricated from heat-resistant material, and the piston moves smoothly in the cylinder. The local atmospheric pressure is 1 bar. Piston-...

  • Thermodynamics: Work & Heat Transfer in Piston-Cylinder

    for part a) got W = 4kJ, dQ = 4.25 kJfor part b) got w = 2kJ...How do you find ΔPE without mass? Do you use the conservation of energy equation?As shown in Fig. P2.56, a gas contained within a piston–cylinder assembly, initially at a volume of 0.1 m3, undergoesa constant-pressure expansion at 2 bar to a final volume of0.12 m3, while being slowly heated through the base. Thechange in internal energy of the gas is 0.25 kJ. The pistonand...

  • Unit mass of a fluid is contained in a cylinder at an initial pressure of The fuid is allowed to ...

    Unit mass of a fluid is contained in a cylinder at an initial pressure of The fuid is allowed to expand reversibly behind a piston according to law P constan volume is doubled. The fluid is then cooled reversibly at constant pressure until the piston r original position, heat is then supplied reversibly with the piston firmly locked in position until the rises to original value of 20 bar Calculate the net work done by the fluid, for an initial...

  • 4 Problem 4: Piston Air expands reversibly and adiabatically in a piston-cylinder from a pressure of...

    4 Problem 4: Piston Air expands reversibly and adiabatically in a piston-cylinder from a pressure of 10 MPa and a temperature of 350 C to a final pressure of 2.0 MPa. Calculate the work done in kJ/kg.

  • 0.21 kg of a gas contained within a piston-cylinder assembly undergoes a constant pressure process at...

    0.21 kg of a gas contained within a piston-cylinder assembly undergoes a constant pressure process at 4 bar beginning at v1 = 0.3 m3/kg. For the gas as the system, the moving boundary work is -18 kJ. Determine the initial and final volume of the gas, in m3.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT