Question

is inscribed in a sphere of radius r, the length L of a side of the cube is intcharge is placed at the center of the spherical surface, the point charge When a cube is inscribed in a sp a positive electric t the spherical surface to the fux due at the surface of the их Ф c d,here at the spherical surf 12 в B. C. 1 ronnected to a battery while you slide a dielectric b between t

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
is inscribed in a sphere of radius r, the length L of a side of the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An electric flux produced by a point charge q though sphere of radius r is фо(E)....

    An electric flux produced by a point charge q though sphere of radius r is фо(E). Describe how this flux would change in the following cases: a) The charge is triplet. 6. b) The volume of the sphere is doubled. c) The surface is changed to a cube with side of length / and the charge placed on the center. d) The charge is moved away from the center, but still inside the cube. e) The charge is outside the...

  • A point charge q is placed in the center of a solid dielectric sphere of radius R and permittivit...

    Pleasee I need the best answer! A point charge q is placed in the center of a solid dielectric sphere of radius R and permittivity e constant. Assume that the dielectric material of the sphere is linear and that the point charge in the center of the sphere is the only free charge a Determine the electrical displacement inside and outside the sphere. b. Determine the electric field inside and outside the sphere c. Determine the polarization vector using (1)...

  • 4. a- A Gaussian sphere with radius 1.20 m encloses a point charge Q1 = 2.20×10–6...

    4. a- A Gaussian sphere with radius 1.20 m encloses a point charge Q1 = 2.20×10–6 C at the spherical center. The electric flux through the spherical surface is measured to be 1. Now Q1 is removed, and another point charge Q2 = –8.80×10–6 C is placed at the spherical center. The electric flux through the spherical surface is then measured to be 2. What is 2/1? b- A Gaussian sphere with radius 1.20 m encloses a point charge Q1...

  • QUESTIONS 1. (30p)The cylindrical closed surface with radius R length L is placed into a nan...

    QUESTIONS 1. (30p)The cylindrical closed surface with radius R length L is placed into a nan uniform electrical filed (Ē = (3x2 + 2)2)) as shown in the figure.; a. (15p) Find the total electric flux passing through the closed surface.. b. (15p) Find the total electric charge inside the closed surface. L È R 2. (40p)A conductive spherical shell of inner radius 2R and outer radius 3R is caries a net charge -3Q. The total charge of an insulating...

  • A charged object is shaped as a cube with a spherical cavity in the center. The...

    A charged object is shaped as a cube with a spherical cavity in the center. The side length of the cube is 1.00 cm and the center sphere has a radius of 0.400 cm. The charge density is uniform throughout the space between the spherical surface and the cubical surface, and the total charge is 10.0 nC. Determine the electric field at a distance L > 1.00 cm from the center of the cube, on a line that is perpendicular...

  • A homogeneous dielectric sphere, of radius a and relative permittivity Er, is situated in air. There...

    A homogeneous dielectric sphere, of radius a and relative permittivity Er, is situated in air. There is a free volume charge density ρ(r)-Po r/a (0 a) throughout the sphere volume, where r is the distance from the sphere center (spherical radial coordinate) and po is a constant. (a) Determine the electric displacement vector D for 0 r 〈 00, (b) what is the electric field inside the sphere (0 r a)? (c) What is the electric field outside the sphere...

  • A point charge q +3 HC is at the center of a sphere of radius 0.3...

    A point charge q +3 HC is at the center of a sphere of radius 0.3 m. (a) Find the surface area of the sphere. (b) Find the magnitude of the electric field at points on the surface of the sphere. N/C (c) What is the flux of the electric field due to the point charge through the surface of the sphere? N m2/C (d) Would your answer to part (c) change if the point charge were moved so that...

  • In the figure the sphere of radius R is solid and non-conductive and has a uniform...

    In the figure the sphere of radius R is solid and non-conductive and has a uniform charge volumetric distribution p0. A spherical shell with inner radius 2R and outer radius 3R is concentric with the sphere and unloaded. Find, in terms of p0 and R: a) the value of the electric charge in the sphere, b) the magnitude of the electric field at a radial distance r - 2.5R, c) the value of the surface charge density induced in the...

  • 1. Find the electric field at point a for: a. A solid sphere of radius R...

    1. Find the electric field at point a for: a. A solid sphere of radius R carrying a volume charge density ρ b. An infinitely long, thin wire carrying a line charge density Side Cross Section C. A plane of infinite area carrying a surface charge density ơ PoT 2. Avery long cylinder with radius a and charge density pa-is placed inside of a conducting cylindrical shell. The cylindrical shell has an inner radius of b and a thickness of...

  • Problem 1: A grounded metal sphere with radius R is located at the center of a...

    Problem 1: A grounded metal sphere with radius R is located at the center of a linear dielectric sphere with radius 2R. The dielectric has a relative permittivity of &r. The composite sphere is exposed to some external fields, which create a potential V-α cosa where α is a constant Find the electric field and the electric displacement in the dielectric, i.e. R<rc2R. Hint: Use the appropriate boundary (surface) conditions to solve for the potential in that region in terms...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT