Question

3. The reaction of hydrogen 042) to form cess, is an important reaction in indusery. This reversible reaction with nitrogen N) to form ammonia NH, known as the Haber pro- shown in Equation 6 (a) Write the chemical equation for the forward reaction b) Write the chemical equation for the reverse reaction (C) What do we mean when we say that this system has reached equlibrium? d) What change in the concentration of H2 wil occur if we add N2 to the equlibrium mbture shown in Equation 6? Briefly explain e) What change in the concentration of H2 will occur we add NH3 to the equilibrium miture? Briefly explain (f) What change in the concentration of N2 wil occur If we remove H2 from the equilibrium midture? Briefly explain
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
3. The reaction of hydrogen 042) to form cess, is an important reaction in indusery. This...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. The cartoon below represents the reaction of nitrogen gas (N2) with hydrogen gas (H2) to synthesize ammonia (NHs). Industrially, this che pro mical process is called the Haber-Bosch cess...

    1. The cartoon below represents the reaction of nitrogen gas (N2) with hydrogen gas (H2) to synthesize ammonia (NHs). Industrially, this che pro mical process is called the Haber-Bosch cess, and is still a very important reaction in the manufacture of fertilizers. The ability to fix every day). It has been estimated that use of nitrogen-based fertilizers has doubled the world's a. The cartoon below shows 6 molecules of hydrogen gas and 2 molecules of nitrogen nitrogen and manufacture fertilizers...

  • Equilibrium - Investigation of Le Chatelier's Principle Pre-Lab Questions 1) Each of the components of the...

    Equilibrium - Investigation of Le Chatelier's Principle Pre-Lab Questions 1) Each of the components of the HC2H2O2 equilibrium system in Part A are clear and colorless. a) Briefly explain how you will determine the effects of the additions you make to this equilibrium b) What will you expect to observe if the H2O concentration is relatively high? c) What will you expect to observe if the H2O* concentration is relatively low? 2) List 3 ways we can disturb a chemical...

  • 1. Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to...

    1. Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation: 3 H2(g) + N2(g) → 2 NH3(2) - How many grams of H2 are needed to produce 14.43 g of NH3? 2. When propane (C2H8) burns, it reacts with oxygen gas to produce carbon dioxide and water. The unbalanced equation for this reaction is... CzHz (g) + O2(g) → CO2(g) + H2O(g) This type of reaction is referred to as a complete...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g)3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.36 g H2 is allowed to react with 9.75 g N2, producing 1.75 g NH3 What is the...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.43 g H2 is allowed to react with 9.70 g N2, producing 2.31 g NH3. Part A: What...

  • The Haber-Bosch process is a very important industrial process. In the Haber Process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber Process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the  equation 3H2(g) + N2(g) ---> 2NH3(g) The ammonia produced in the Haber process has a wide range of uses from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.57 g H2 is allowed to react with 9.87 g N2, producing 1.69 g Nh3....

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.26 g H2 is allowed to react with 9.75 g N2, producing 1.63 g NH3. Part A) What...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.10 g H2 is allowed to react with 9.72 g N2, producing 1.68 g NH3. Part A What...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.94 g H2 is allowed to react with 10.1 g N2, producing 1.59 g NH3. Part A What...

  • The Haber process for the production of ammonia involves the equilibrium N2(g) + 3 H2(g) ⇌...

    The Haber process for the production of ammonia involves the equilibrium N2(g) + 3 H2(g) ⇌ 2 NH3(g) Assume that Δ H° = -92.38 kJ and ΔS° = -198.3 J/K for this reaction do not change with temperature. a. Without doing calculations, predict the direction in which ΔG° for the reaction changes with increasing temperature. Explain your prediction. b. Calculate ΔG° at 25 °C and 500 °C. c. At what temperature does the Haber ammonia process become nonspontaneous? d. Calculate...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT