Question

6 10) Some air increases temperature from 288 K to 380 K a t constant pressure. -7 What is the enthalpy increase of the air?

In the following examples you may assume air is a perfect gas and the following values: gas constant for air 287 J/(kg) ratio

Please help solve these questions. Thank you.

Also, will the enthalpy increase be 92460 J/kg?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ansi- given that ain Increases Tempature from - 888 to 360 K at the conut out Terepat wilo What is The enthalphy Increases ofgiven that r=1.9 For the air * Cp is al secedy given - 1005 J/eg.k = 1.4 TS Then co= 4 = 1005 - 117.85 J/kg .k 1.4 specie Hea

Add a comment
Know the answer?
Add Answer to:
Please help solve these questions. Thank you. Also, will the enthalpy increase be 92460 J/kg? 6...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2.-Consider a cylindrical combustion chamber where air enters at 480 kPa with a density of 3.05...

    2.-Consider a cylindrical combustion chamber where air enters at 480 kPa with a density of 3.05 kg/m. At inlet the stagnation air temperature is 553K. Heat is added by combustion and the air exits the chamber at a Mach number of 0.4. Determine the stagnation temperature at the exit and the specific heat added to the chamber due to combustion if the chamber is assumed frictionless. Specific heat at constant pressure of air is 1.005 kJ/kg.K and the gas constant...

  • Q6 (a) Explain briefly the different between incompressible and compressible fluid flow (5 marks) (6) Air...

    Q6 (a) Explain briefly the different between incompressible and compressible fluid flow (5 marks) (6) Air at pressure and temperature of 200 kPa, 373.2 K flows through a duct at Mach Number of 0.8. The gas constant and specific heat ratio of air are 0.287 kJ/kg k, 1.4 respectively. Determine, (1) air velocity: (11) stagnation pressure: (111) stagnation temperature and (iv) stagnation density (8 marks) Nitrogen enters a converging diverging nozzle from a reservoir at a pressure of 700 kPa...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 360 Inlet pressure: P1 (kPa) = 583 Inlet Velocity: V1 (m/s) = 105 Area at inlet (cm^2) = 8.2 Mach number at the exit = 1.86 a) Determine...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 353 Inlet pressure: Pl (kPa) = 546 Inlet Velocity: V1 (m/s) = 61 Area at nozzle inlet: A1 (cm^2) = 7.24...

  • Homework Problem IW8 3 Attemps Used 20 Due DateThu, Jul 30, 2020, 23:59:59 Current Time Thu,...

    Homework Problem IW8 3 Attemps Used 20 Due DateThu, Jul 30, 2020, 23:59:59 Current Time Thu, Jul 30, 2020, 00:02:48 Air flows through a converging-diverging nozzle/differ. Assuming isentropic flow, air as an ideal gas, and constant specific heat determine the state at several locations in the system Note: The specific heat ratio and gas constant for air are given ask-1A od R-0.287 kg K respectively --Given Vues Inlet Temperature: TI (K) 358 Inlet pressure: PI (kPa) - 626 Inlet Velocity:...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 338 Inlet pressure: P1 (kPa) = 555 Inlet Velocity: V1 (m/s) = 121 Area at inlet (cm^2) = 9 Mach number at the exit = 1.56 a) Determine...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 321 Inlet pressure: P1 (kPa) = 588 Inlet Velocity: V1 (m/s) = 97 Area at nozzle inlet: A1 (cm^2) =...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) 370 Inlet pressure: P1 (kPa) = 576 Inlet Velocity: V1 (m/s) - 106 Area at nozzle inlet: A1 (cm^2) = 8.32...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 348 Inlet pressure: P1 (kPa) = 544 Inlet Velocity: V1 (m/s) = 122 Area at nozzle inlet: A1 (cm^2) =...

  • B4 (a) Ste the parameter that is normally used to differentiate between incompressible and compressible flow conditions. What value is normally chosen for this parameter to signify a change from one...

    B4 (a) Ste the parameter that is normally used to differentiate between incompressible and compressible flow conditions. What value is normally chosen for this parameter to signify a change from one condition to another? (5%] For isentropic flow conditions, sketch a subsonic and a supersonic nozzle (b) Sketch also a subsonic and a supersonic diffuser. [1096] (c) A converging-diverging nozzle is attached at one end to a large supply tank that contains air, and at the other end to a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT