Question

In which direction will the net reaction proceed.X(g) + Y(g) <==> Z(g) .. Kp = 1.00...

In which direction will the net reaction proceed.
X(g) + Y(g) <==> Z(g) .. Kp = 1.00 at 300k
for each of these sets of initial conditions?


1) [X] = [Y] = [Z] = 1.0 M
a] net reaction goes to the left [this one?]
b] net reaction goes to the right
c] reaction is at equilibrium

2. Px = Pz = 1.0 atm, Py = 0.50 atm

a] net reaction goes to the left
b] net reaction goes to the right
c] reaction is at equilibrium

1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1
Concepts and reason

Equilibrium constant is the ratio between the concentration of products to the concentration of reactants. The equilibrium constant is expressed asK{\rm{K}}. If the value of K{\rm{K}}is more than 1, the equilibrium favors products and if the value of K{\rm{K}}is less than 1, the equilibrium favors reactants.

Fundamentals

For a simple equilibrium reaction,

The equilibrium constant with respect to molar concentration is represented asKc{\rm{Kc}}.

Kc=[C]c[D]d[A]a[B]b{\rm{Kc}}\,\,{\rm{ = }}\,\,\frac{{{{\left[ {\rm{C}} \right]}^{\rm{c}}}{{\left[ {\rm{D}} \right]}^{\rm{d}}}}}{{{{\left[ {\rm{A}} \right]}^{\rm{a}}}{{\left[ {\rm{B}} \right]}^{\rm{b}}}}}

The equilibrium constant in terms of partial pressure can be represented asKp{{\rm{K}}_{\rm{p}}}.

KP=(C)c(D)d(A)a(B)b{{\rm{K}}_{\rm{P}}}\,{\rm{ = }}\,\,\frac{{{{\left( {\rm{C}} \right)}^{\rm{c}}}{{\left( {\rm{D}} \right)}^{\rm{d}}}}}{{{{\left( {\rm{A}} \right)}^{\rm{a}}}{{\left( {\rm{B}} \right)}^{\rm{b}}}}}

The relation between both Kc{\rm{Kc}}and Kp{{\rm{K}}_{\rm{p}}}is:

Kp=Kc(RT)ΔnKp=equilibriumconstantintermsofpartialpressure.Kc=equilibriumconstantintermsofmolarconcentration.R=gasconstant(0.0821L.atmmol.K)T=temperatureΔn=numberofmolesofproductnumberofmolesofreactant.\begin{array}{l}\\{{\rm{K}}_{\rm{p}}}\,{\rm{ = }}\,{{\rm{K}}_{\rm{c}}}{\left( {{\rm{RT}}} \right)^{{\rm{\Delta n}}}}\\\\{{\rm{K}}_{\rm{p}}}\,{\rm{ = }}\,\,{\rm{equilibrium}}\,\,{\rm{constant}}\,\,{\rm{in}}\,{\rm{terms}}\,\,{\rm{of}}\,{\rm{partial}}\,{\rm{pressure}}{\rm{.}}\\\\{{\rm{K}}_{\rm{c}}}\,{\rm{ = }}\,\,{\rm{equilibrium}}\,\,{\rm{constant}}\,\,{\rm{in}}\,{\rm{terms}}\,\,{\rm{of}}\,{\rm{molar}}\,\,{\rm{concentration}}{\rm{.}}\\\\{\rm{R}}\,\,\,{\rm{ = }}\,\,{\rm{gas}}\,\,{\rm{constant}}\,\,\left( {{\rm{0}}{\rm{.0821}}\frac{{{\rm{L}}{\rm{.atm}}}}{{{\rm{mol}}{\rm{.K}}}}} \right)\\\\{\rm{T}}\,\,\,{\rm{ = }}\,\,{\rm{temperature}}\\\\{\rm{\Delta n = }}\,\,{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,{\rm{product}}\,{\rm{ - }}\,{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,{\rm{reactant}}{\rm{.}}\\\end{array}

The reaction quotient is represented as Q{\rm{Q}}which is used to predict the respective amount of products and reactants. The reaction quotient Q{\rm{Q}}of a reaction is measured at a specific point.

Relationship between K and Q:

The reaction at equilibrium is measured byK{\rm{K}}. The reaction that is not present in equilibrium is represented asQ{\rm{Q}}.

In terms of molar concentration, Q{\rm{Q}}is represented as,

Qc=[C]c[D]d[A]a[B]b{{\rm{Q}}_{\rm{c}}}\,\,{\rm{ = }}\,\,\frac{{{{\left[ {\rm{C}} \right]}^{\rm{c}}}{{\left[ {\rm{D}} \right]}^{\rm{d}}}}}{{{{\left[ {\rm{A}} \right]}^{\rm{a}}}{{\left[ {\rm{B}} \right]}^{\rm{b}}}}}

In terms of partial pressure, Q{\rm{Q}}is represented as,

QP=(C)c(D)d(A)a(B)b{{\rm{Q}}_{\rm{P}}}\,{\rm{ = }}\,\,\frac{{{{\left( {\rm{C}} \right)}^{\rm{c}}}{{\left( {\rm{D}} \right)}^{\rm{d}}}}}{{{{\left( {\rm{A}} \right)}^{\rm{a}}}{{\left( {\rm{B}} \right)}^{\rm{b}}}}}

IfQ>K{\rm{Q}}\,\,{\rm{ > }}\,\,{\rm{K}}, the reaction is reactant favored.

IfQ>K{\rm{Q}}\,\,{\rm{ > }}\,\,{\rm{K}}, the reaction favors products.

If Q=K{\rm{Q}}\,\, = \,\,{\rm{K}}, the reaction is at equilibrium.

Δn=molesofproductsmolesofreactantsΔn=1(1+1)Δn=1CalculationfordeterminingKc:Kp=Kc(RT)Δn1.00=Kc(0.0821L.atmmol.K×300K)1\begin{array}{l}\\{\rm{\Delta n}}\,\,{\rm{ = }}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{products}}\,\,{\rm{ - }}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{reactants}}\\\\{\rm{\Delta n}}\,\,{\rm{ = }}\,\,{\rm{1 - (1 + 1)}}\\\\{\rm{\Delta n}}\,\,{\rm{ = }}\,\,{\rm{ - 1}}\\\\{\rm{Calculation}}\,\,{\rm{for}}\,\,{\rm{determining}}\,\,{\rm{Kc:}}\\\\\,\,\,\,{{\rm{K}}_{\rm{p}}}{\rm{ = }}\,\,{{\rm{K}}_{\rm{c}}}{{\rm{(RT)}}^{{\rm{\Delta n}}}}\\\\{\rm{1}}{\rm{.00}}\,\,\,{\rm{ = }}\,\,{{\rm{K}}_{\rm{c}}}\,{\left( {{\rm{0}}{\rm{.0821}}\,\frac{{{\rm{L}}{\rm{.atm}}}}{{{\rm{mol}}{\rm{.K}}}}\,\,{\rm{ \times }}\,\,{\rm{300K}}} \right)^{{\rm{ - 1}}}}\\\end{array}

1.00=Kc(0.0821L.atmmol.K×300K)Kc=1.00(0.0821L.atmmol.K×300K)Kc=24.63\begin{array}{l}\\{\rm{1}}{\rm{.00}}\,\,\,{\rm{ = }}\,\,\frac{{{{\rm{K}}_{\rm{c}}}}}{{{{\left( {{\rm{0}}{\rm{.0821}}\,\frac{{{\rm{L}}{\rm{.atm}}}}{{{\rm{mol}}{\rm{.K}}}}\,\,{\rm{ \times }}\,\,{\rm{300K}}} \right)}^{}}}}\\\\\,\,\,\,{{\rm{K}}_{\rm{c}}}\,\,{\rm{ = }}\,\,{\rm{1}}{\rm{.00}}\,\,\left( {{\rm{0}}{\rm{.0821}}\,\frac{{{\rm{L}}{\rm{.atm}}}}{{{\rm{mol}}{\rm{.K}}}}\,\,{\rm{ \times }}\,\,{\rm{300K}}} \right)\\\\\,\,\,{{\rm{K}}_{\rm{c}}}\,\,{\rm{ = }}\,\,\,{\rm{24}}{\rm{.63}}\\\end{array}

Part 1

Given:[X]=1.0M[Y]=1.0M[Z]=1.0M\begin{array}{l}\\{\rm{Given:}}\\\\\left[ {\rm{X}} \right]\,\,{\rm{ = }}\,\,{\rm{1}}{\rm{.0M}}\\\\\left[ {\rm{Y}} \right]\,\,{\rm{ = }}\,\,{\rm{1}}{\rm{.0M}}\\\\\,\left[ {\rm{Z}} \right]\,\,{\rm{ = }}\,\,{\rm{1}}{\rm{.0M}}\\\end{array}

Calculation:Qc=[Z][X][Y]=11×1Qc=1\begin{array}{l}\\{\rm{Calculation:}}\\\\{{\rm{Q}}_{\rm{c}}}\,\,{\rm{ = }}\,\,\frac{{\left[ {\rm{Z}} \right]}}{{\left[ {\rm{X}} \right]\left[ {\rm{Y}} \right]}}\\\\\,\,\,\,\,\,\,{\rm{ = }}\,\,\,\frac{{\rm{1}}}{{{\rm{1}}\,\,{\rm{ \times }}\,\,{\rm{1}}}}\\\\{{\rm{Q}}_{\rm{c}}}\,\,{\rm{ = }}\,\,{\rm{1}}\\\end{array}

From the Step 1 calculation, the value of Kcis24.63{\rm{Kc}}\,\,{\rm{is}}\,\,{\rm{24}}{\rm{.63}}. Therefore, Qc{{\rm{Q}}_{\rm{c}}}is less thanKc{\rm{Kc}}.

a)The net reaction will not go to the left because the value of Qc{{\rm{Q}}_{\rm{c}}}is not greater thanKc{\rm{Kc}}.

b)The reaction is not in equilibrium because the value of Qc{{\rm{Q}}_{\rm{c}}}is not equal toKc{\rm{Kc}}.

c)The reaction will go to the right because the value of Qc{{\rm{Q}}_{\rm{c}}}is less thanKc{\rm{Kc}}.

Part 2

Given:PX=1.0atmPZ=1.0atmPY=0.50atm\begin{array}{l}\\{\rm{Given:}}\\\\{{\rm{P}}_{\rm{X}}}{\rm{ = }}\,\,{\rm{1}}{\rm{.0}}\,{\rm{atm}}\\\\{{\rm{P}}_{\rm{Z}}}\,\,{\rm{ = }}\,\,{\rm{1}}{\rm{.0}}\,{\rm{atm}}\\\\{{\rm{P}}_{\rm{Y}}}\,\,{\rm{ = }}\,\,{\rm{0}}{\rm{.50}}\,{\rm{atm}}\\\end{array}

CalculationofQp:Qp=PZPXPY=1.0atm1.0atm×0.5atmQp=2.0\begin{array}{l}\\{\rm{Calculation}}\,\,{\rm{of}}\,\,{{\rm{Q}}_{\rm{p}}}{\rm{:}}\\\\{{\rm{Q}}_{\rm{p}}}\,{\rm{ = }}\,\,\frac{{{{\rm{P}}_{\rm{Z}}}}}{{{{\rm{P}}_{\rm{X}}}\,{{\rm{P}}_{\rm{Y}}}}}\,\,\\\\\,\,\,\,\,\,\,{\rm{ = }}\,\,\frac{{{\rm{1}}{\rm{.0}}\,{\rm{atm}}\,}}{{{\rm{1}}{\rm{.0}}\,{\rm{atm}}\,{\rm{ \times }}\,{\rm{0}}{\rm{.5}}\,{\rm{atm}}\,}}\\\\{{\rm{Q}}_{\rm{p}}}\,{\rm{ = }}\,\,\,{\rm{2}}{\rm{.0}}\\\end{array}

From the given data, the value of Kpis1.00{\rm{Kp}}\,\,{\rm{is}}\,\,{\rm{1}}{\rm{.00}}. Therefore, Qp{{\rm{Q}}_{\rm{p}}}is greater thanKp{\rm{Kp}}.

c)The net reaction will not go to the right because the value of Qp{{\rm{Q}}_{\rm{p}}}is not less thanKp{\rm{Kp}}.

d)The reaction is not in equilibrium because the value of Qp{{\rm{Q}}_{\rm{p}}}is not less thanKp{\rm{Kp}}.

a)The reaction will go to the left because the value of Qp{{\rm{Q}}_{\rm{p}}}is greater thanKp{\rm{Kp}}.

Ans: Part 1

b)Net reaction goes to the right.

Part 2

a)Net reaction goes to the left.

Add a comment
Know the answer?
Add Answer to:
In which direction will the net reaction proceed.X(g) + Y(g) <==> Z(g) .. Kp = 1.00...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT