Question

For a certain perfect gas, CV,m = 2.5R at all temperatures. Calculate q, w, ?U, ?H,...

For a certain perfect gas, CV,m = 2.5R at all temperatures. Calculate q, w, ?U, ?H, and ?S when 2.00 mol of this gas undergoes each of the following processes:

(a) a reversible isobaric expansion (1.00 atm, 20.0 L) to (1.00 atm, 40.0 L).

(b) A reversible isothermal compression from (0.500 atm, 40.0 L) to (1.00 atm, 20.0 L).

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ans A isobaoc expansion jrom ( at», aodn3) to latr) atre 2. (yodn, o.tm 80 08a 20 yo 131.80DH 7088 15a J a = 068 1a1 80 to Clatm / 20dm?) la) 80

Add a comment
Know the answer?
Add Answer to:
For a certain perfect gas, CV,m = 2.5R at all temperatures. Calculate q, w, ?U, ?H,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sample of 1.00 mol perfect gas molecules

    A sample of 1.00 mol perfect gas molecules with Cp,m = 7/2 R is put through the following cycle:(a) Constant-volume heating to twice its initial volume,(b) Reversible, adiabatic expansion back to its initial temperature,(c) Reversible isothermal compression back to 1.00 atm. Calculate q, w, ?U, and ?H for each step and overall.

  • A sample of 1.00 mol perfect gas molecules with Cp,m = 7/2R and at 298 K...

    A sample of 1.00 mol perfect gas molecules with Cp,m = 7/2R and at 298 K and 1.00 atm is put through the following cycle: (a) Constant volume heating to twice its initial pressure, (b) Reversible, adiabatic expansion back to its initial temperature, (c) reversible isothermal compression back to 1.00 atm. Calculate q, w, ΔU, and ΔH for each step and overall (assume the initial temp is 298 K).

  • 1) Compute the following values (in Joules) of w,q, AE, AH, AS, AA, and AG for...

    1) Compute the following values (in Joules) of w,q, AE, AH, AS, AA, and AG for 2.00 mole of an ideal gas that undergoes a reversible isothermal (300K) expansion from P = 5.00 atm to P = 0.500 atm.

  • 6. (10 marks) A sample of 3.00 mol of ideal gas with Cv,m = 2.5R undergoes...

    6. (10 marks) A sample of 3.00 mol of ideal gas with Cv,m = 2.5R undergoes the change of states shown in the following P-T diagram (a + b → → a). Calculate the amount of expansion work (w) involved in each segment. P (atm) irreversible 1.50 reversible irreversible 1.001 - 400 600 T(K)

  • 1 00 mol of a perfect gas initially at 1 00 atm and 298 K with...

    1 00 mol of a perfect gas initially at 1 00 atm and 298 K with Cpm (7/2) R is put through the following cycle () constant-volume heating to twice its initial temperature (u) reversible, adiabatic expansion back to its onginal temperature () reversible, isothermal compression back to 1 00 atm Calculate q, w, AU, and AH for each of the steps ()-(m) above Hints First calculate AU, then q AH easily follows Remember the meaning of an adiabatic process...

  • Suppose that we allow 3.50 mol of an ideal gas with Cv=5R/2 to expand isothermally and...

    Suppose that we allow 3.50 mol of an ideal gas with Cv=5R/2 to expand isothermally and reversibly from 100 atm, 10 L to 10.0 atm and then the gas is allowed to expand adiabatically and reversibly to a final pressure of 1.00 atm. Calculate q, w, ΔU and ΔH for each step and the total values for the two steps. Suppose now that the processes are carried out irreversibly with pressure dropping discontinuously from 100 atm to 10.0 atm in...

  • 1. a 10 mol sample of ideal gas whose heat capacities are Cv= 20.8 J/K Mole...

    1. a 10 mol sample of ideal gas whose heat capacities are Cv= 20.8 J/K Mole and Cv = 29.1 J/K Mole a. Undergoes a reversible constant volume cooking from 49.3 L, 300 K, and 5.00 atm to 150 K. Calculate q, w, and ΔU. b. the same gas then underwent a reversible constant pressure expansion from 150 K and 2.50 atm to 98.6 L. Calculate q , w, and ΔU. You'll need the ideal gas law to calculate T-final...

  • 1.95 mol of an ideal gas with CV = 3R/2 undergoes the following transformations from an...

    1.95 mol of an ideal gas with CV = 3R/2 undergoes the following transformations from an initial state T = 290 K, P = 1.000 bar. Find q, w, ∆U, ∆H and ∆S for each transformation. a) A reversible adiabatic compression until the final temperature reaches 390 K.

  • Ten. moles of ideal gas (monatomic), in the initial state P1=10atm, T1=300K are taken round the...

    Ten. moles of ideal gas (monatomic), in the initial state P1=10atm, T1=300K are taken round the following cycle: a. A reversible isothermal expansion to V=246 liters, and b. A reversible adiabatic process to P=10 atm c. A reversible isobaric compression to V=24.6 liters Calculate the change of work (w), heat (q), internal energy (U), and entropy (S) of the system for each process?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT