Question

In the Bohr model, the hydrogen atom consists of an electron in a circular orbit of...

In the Bohr model, the hydrogen atom consists of an electron in a circular orbit of radius a0 = 5.29 x 10-11 m around the nucleus. Using this model, and ignoring relativistic effects, what is the speed of the electron? The mass of the electron is 9.11 X 10-31 kg.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
In the Bohr model, the hydrogen atom consists of an electron in a circular orbit of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the bohr model of the hydrogen atom the electron is in a circular orbit of...

    In the bohr model of the hydrogen atom the electron is in a circular orbit of r = 5.29 x 10^-11m around the nuclear proton. The mass of the electron is 9.11 x 10^ -31 kg. Find the speed of the electron. Hint: use Coulomb’s law and the concept of the force for an object going in a circular motion.

  • In the Bohr model of the hydrogen atom, the electron moves in a circular orbit of...

    In the Bohr model of the hydrogen atom, the electron moves in a circular orbit of radius with a speed of5.3 x 10^-11m with a speed of 2.2 x 10^6 m/s.Find the magnitude of the magnetic field that the electron produces at the location of the nucleus (treated as a point).B = _____T

  • In the Bohr model of the atom, an electron can be thought of a small sphere...

    In the Bohr model of the atom, an electron can be thought of a small sphere that rotates around the nucleus. In a hydrogen atom, an electron (me=9.11 x 10^-31 kg) orbits a proton at a distance of 5.3 x 10^-11 m from the proton. If the proton pulls on the electron with a force of 9.2 x 10^8 N, how many revolutions per second does the electron make? 6. In the Bohr model of the atom, an electron can...

  • In the Bohr model of the Hydrogen atom, a single electron orbits around a single proton...

    In the Bohr model of the Hydrogen atom, a single electron orbits around a single proton (which constitutes the nucleus). The mass of the electron (9.11x10-31 kg) is much less than the proton (1.67x10-27 kg), so the proton remains stationary while the electron moves around it. If the electron is 6.6x10-11 m away from the proton, calculate the magnitude of the electric force (in N) exerted by the proton on the electron. b)   [Continued ...] In the Bohr model, an...

  • In the simple Bohr model of the hydrogen atom, an electron moves in a circular orbit...

    In the simple Bohr model of the hydrogen atom, an electron moves in a circular orbit of radius r = 5.30 × 10-11 m around a fixed proton. (a) What is the potential energy of the electron? (b) What is the kinetic energy of the electron? (c) Calculate the total energy when it is in its ground state. (d) How much energy is required to ionize the atom from its ground state?

  • In the Bohr model of the atom, electrons travel in circular orbits around a nucleus in...

    In the Bohr model of the atom, electrons travel in circular orbits around a nucleus in much the same way that planets orbit the sun. Within this model, and electron in a hydrogen atom orbits the proton in a circle with radius 5.29×10−11m. What is the electric potential energy of the hydrogen atom?

  • 11 In the Bohr model, the electron moves in a circular orbit around the nucleus with...

    11 In the Bohr model, the electron moves in a circular orbit around the nucleus with a radius of 5.29 x 10 m. At any moment, what is the electric potential created by the nucleus at the location of the electron? (hint: use Eq. 19.6, the electric potential is created by the proton) a. + 14.1 V b. - 14.1 V c. O V d. +23.9 V e. + 27.2 V

  • 7. In the Bohr model of atomic hydrogen, an electron of mass 9.11 x 10-31 kg...

    7. In the Bohr model of atomic hydrogen, an electron of mass 9.11 x 10-31 kg revolves around the proton in a circular orbit of radius .29 x 10-11 m. The proton and electron have equal charge magnitudes and the mass of the proton is 1.67 x10-27 kg. What is the radial acceleration of the electron? What is it's velocity? What is it's angular velocity?

  • 3. In the Bohr model of the hydrogen atom , an electron in the lowest energy...

    3. In the Bohr model of the hydrogen atom , an electron in the lowest energy state moves at a speed of 2.19 x 10^6 m/s in a circular path of radius 5.29 x 10^-11 m. a) What is the circumference of the circular path made by the e-? b) Use this distance to find the time needed to make 1 orbit. c) Using the time for 1 orbit, determine how many orbits the e- would make in 1 sec....

  • Question #1 Hydrogen atom consists of one electron and one proton. In the Bohr model of...

    Question #1 Hydrogen atom consists of one electron and one proton. In the Bohr model of the Hydrogen atom, the electron orbits the proton in a circular orbit of radius 0.529 E-10 m. This radius is known as the Bohr Radius. Calculate the smallest amount of kinetic energy the electron must have in order to leave its circular orbit and move to infinity far from the proton? Question #2 The potential in a region between x = 0 and x...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT