Question

a block of mass 6kg resting on a horizontal frictionless surface is attached to a spring with force constant k=210N/m. a force of force is applied to the block in x direction, thereby compressing the spring from its equillibrium length by 0.1m.
1) what is the magnitude of the force?
2) the force is removed and the block starts to oscillate. what is the period of this oscillation?

d to a spring with force constant npressing the sp


0 0
Add a comment Improve this question Transcribed image text
Answer #1

Here ,

k = 210 N/m

x = 0.1 m

1) magnitude of force = k * x

magnitude of force = 210 * 0.10

magnitude of force = 21 N

2)

for the period

period of oscillation = 2pi * sqrt(m/k)

period of oscillation = 2pi * sqrt(6/210)

period of oscillation = 1.06 s

Add a comment
Know the answer?
Add Answer to:
a block of mass 6kg resting on a horizontal frictionless surface is attached to a spring...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a block of mass 1.5kg is suspended from the ceiling by a spring with a spring...

    a block of mass 1.5kg is suspended from the ceiling by a spring with a spring constant k=15N/m. a force of 20N is applied to the block in the +y-direction thereby compressing the spring (see picture). the block is initially at rest. at time t=0, the force is removed and the block starts to oscillate down and up. what is the amplitude of the oscillation? g constant k 15 Nm. A force of see picture. The block is

  • 1) A 4.75 kg block is attached to a horizontal spring on a frictionless surface. When...

    1) A 4.75 kg block is attached to a horizontal spring on a frictionless surface. When the block is pushed into the spring 22.5 cm, a force of 195 N is exerted on the block. a. Find the spring constant of the spring. b. If the block is released and begins to oscillate, find the period and frequency of oscillation. c. Find the maximum velocity of the block.

  • A block of mass 0.992 kg rests on a frictionless horizontal surface. The block is attached...

    A block of mass 0.992 kg rests on a frictionless horizontal surface. The block is attached to an ideal spring. Calibration shows that a force of 0.75 N is required to compress the spring 0.25 cm. A 8.0-g rifle bullet is fired and embeds itself in the block, compressing the spring 15.0 cm before rebounding. (a) What was the speed of the block just after impact? (b) What was the initial bullet speed?

  • A 1.05 kg block slides on a frictionless, horizontal surface with an speed of 1.45 m/sec....

    A 1.05 kg block slides on a frictionless, horizontal surface with an speed of 1.45 m/sec. The block encounters an unstretched spring with a spring constant of 285 N/m. 1)What is the initial kinetic energy of the block before it hits the spring? KE0 = 2)What is the potential energy of the mass and spring system when the spring is at its point of maximum compression? Umax = 3)How far is the spring compress before the block comes to rest?...

  • 7) A block of mass m, resting on a horizontal frictionless surface, is attached to one...

    7) A block of mass m, resting on a horizontal frictionless surface, is attached to one end of a spring; the other end is fixed to a wall. It takes 3.6 J of work to compress the spring by 0.13 m. If the spring is compressed, and the mass is released from rest, it experiences a maximum acceleration of 15 m/s2. Find the value of (a) the mass of the block. As the block passes through its equilibrium position, a...

  • A block of mass M is attached to a wall by a massless spring with spring constant k. The block is allowed to oscillate on a frictionless surface.

    A block of mass M is attached to a wall by a massless spring with spring constant k. The block is allowed to oscillate on a frictionless surface. A second block of mass m is placed on top of the first block. The coefficient of static friction between the two blocks is his. What is the angular frequency of oscillation, and what is the maximum possible amplitude of oscillation such that the second block will not fly off?

  • QUESTIONS A block of mass m, resting on a horizontal frictionless surface, is attached to one...

    QUESTIONS A block of mass m, resting on a horizontal frictionless surface, is attached to one end of a spring; the other end is fixed to a wall. It takes 3.6J of work to compress the spring by 13 cm; then it is released from rest. It experiences a maximum acceleration of 15 m/s2. Find the value of (a) the mass of the block. As the block passes through its equilibrium position, a lump of putty of mass mi -...

  • A block of mass m, resting on a horizontal frictionless surface, is attached to one end...

    A block of mass m, resting on a horizontal frictionless surface, is attached to one end of a spring; the other end is fixed to a wall. It takes 3.6 J of work to compress the spring by 13 cm; then it is released from rest. It experiences a maximum acceleration of 15 m/s2. Find the value of (a) the mass of the block. As the block passes through its equilibrium position, a lump of putty of mass mi -...

  • A block of mass m, resting on a horizontal frictionless surface, is attached to one end...

    A block of mass m, resting on a horizontal frictionless surface, is attached to one end of a spring; the other end is fixed to a wall. It takes 3.6 J of work to compress the spring by 13 cm; then it is released from rest. It experiences a maximum acceleration of 15 m/s2. Find the value of (a) the mass of the block. As the block passes through its equilibrium position, a lump of putty of mass mi -...

  • A block of mass m, resting on a horizontal frictionless surface, is attached to one end...

    A block of mass m, resting on a horizontal frictionless surface, is attached to one end of a spring; the other end is fixed to a wall. It takes 3.6J of work to compress the spring by 13 cm; then it is released from rest. It experiences a maximum acceleration of 15 m/s2. Find the value of (a) the mass of the block. As the block passes through its equilibrium position, a lump of putty of mass mı = 1.2...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT