Question

4 From the figure below, ml - 2 kg, m2 -3 kg, m3-10 kg, p tem. 0.3. Determine the acceleration of the system. 2

0 0
Add a comment Improve this question Transcribed image text
Answer #1


S Fu body diarom Given m 2 kg 3 kg N O.3 N2 Sue 8.6-lurqpog T2 block 3 friction in no normal reaction T2 as 10),4m,) So if ac

Add a comment
Know the answer?
Add Answer to:
4 From the figure below, ml - 2 kg, m2 -3 kg, m3-10 kg, p tem....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure shown below ml-4 kg and m2- 2kg. Neglect the friction between ml and...

    In the figure shown below ml-4 kg and m2- 2kg. Neglect the friction between ml and the table, After the system begins to move, what is the magnitude and direction of the acceleration? 0 1.35 m/s2 1n 45

  • Consider the diagram below where m1 = 10 kg, m2 = 5 kg and m3 =...

    Consider the diagram below where m1 = 10 kg, m2 = 5 kg and m3 = 10 kg. (a) Find the force if the acceleration of all boxes to the left is 10 m s−2 . (b) Find the forces between each box F12, F23, F21, and F32. M13 1721 m2

  • The figure below show three masses m1=1.1 kg, m2=2.8 kg, and m3=4.3 kg which undergo two...

    The figure below show three masses m1=1.1 kg, m2=2.8 kg, and m3=4.3 kg which undergo two successive collisions. The first collision between m1, which has an initial velocity v=8.2 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m1+m2 and m3 (which is initially at rest) is elastic. What is the velocity of m3 after the second collision? The figure below show three masses m1=1.1 kg, m2=2.8 kg, and m3=4.3 kg...

  • The figure below show three masses m1=1.7 kg, m2=2.9 kg, and m3=4.5 kg which undergo two...

    The figure below show three masses m1=1.7 kg, m2=2.9 kg, and m3=4.5 kg which undergo two successive collisions. The first collision between m1, which has an initial velocity v=7.9 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m1+m2 and m3 (which is initially at rest) is elastic. What is the velocity of m3 after the second collision? (use figure in picture, but answer question above) The figure below show three...

  • The figure below show three masses m1=1.6 kg, m2=3.0 kg, and m3=4.6 kg which undergo two...

    The figure below show three masses m1=1.6 kg, m2=3.0 kg, and m3=4.6 kg which undergo two successive collisions. The first collision between m1, which has an initial velocity v=6.9 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m1+m2 and m3 (which is initially at rest) is elastic. What is the velocity of m3 after the second collision? V 1 2 3

  • In the figure below, m1 = 10.0 kg and m2 = 4.5 kg. The coefficient of...

    In the figure below, m1 = 10.0 kg and m2 = 4.5 kg. The coefficient of static friction between m1 and the horizontal surface is 0.60 while the coefficient of kinetic friction is 0.30. (a) If the system is released from rest, what will its acceleration be? m/s2 (b) If the system is set in motion with m2 moving downward, what will be the acceleration of the system? m/s2

  • The figure below show three masses m1=1.6 kg, m2=3.0 kg, and m3=4.6 kg which undergo two...

    The figure below show three masses m1=1.6 kg, m2=3.0 kg, and m3=4.6 kg which undergo two successive collisions. The first collision between m1, which has an initial velocity v=6.9 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m1+m2 and m3 (which is initially at rest) is elastic. What is the velocity of m3 after the second collision? V 1 2 co

  • The figure below show three masses m1=1.5 kg, m2=2.7 kg, and m3=4.6 kg which undergo two...

    The figure below show three masses m1=1.5 kg, m2=2.7 kg, and m3=4.6 kg which undergo two successive collisions. The first collision between m1, which has an initial velocity v=8.6 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m1+m2 and m3 (which is initially at rest) is elastic. What is the velocity of m3 after the second collision? V 1 2 co

  • The figure below show three masses m1=1.5 kg, m2=2.9 kg, and m3=4.6 kg which undergo two...

    The figure below show three masses m1=1.5 kg, m2=2.9 kg, and m3=4.6 kg which undergo two successive completely inelastic collisions. If m1 has an initial velocity v=6.2 m/s and both m2 and m3 are initially at rest, what is the velocity of the combined mass after the second collision. V 1 2 co

  • The figure below show three masses m=1.1 kg, m2=2.6 kg, and m3=4.1 kg which undergo two...

    The figure below show three masses m=1.1 kg, m2=2.6 kg, and m3=4.1 kg which undergo two successive collisions. The first collision between my, which has an initial velocity v=6.2 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m +m2 and m3 (which is initially at rest) is elastic. What is the velocity of mz after the second collision? 1 2 3 Select one 2.97 m/s 1.92 m/s 1.22 m/s 2.27...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT