Question

c. Evaluate ,f(z) dz with า the circle of radius 1 centered at the origin and traveled once counterclockwise ˊ们: (1-2 For rea

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) We solve the equation \begin{align*}z^2-2tz+1=0\end{align*} for variable \begin{align*}z\end{align*} (via quadratic formula), to get

\begin{align*}z=t\pm \sqrt{t^2-1}\end{align*}

Let \begin{align*}\omega_+=t+\sqrt{t^2-1}\end{align*} and \begin{align*}\omega_-=t-\sqrt{t^2-1}\end{align*} ; since \begin{align*}-1<t<1\end{align*} , we have \begin{align*}t^2<1\end{align*} , so that \begin{align*}\omega_+,\omega_-\end{align*} are complex (and not real). Because \begin{align*}z^2-2tz+1=(z-w_+)(z-w_-)\end{align*} , we find

\begin{align*}(w_+-w_-)f_t(z)&={\frac {(w_+-w_-)}{(1-2tz+z^2)}}\\ &={\frac {(w_+-w_-)}{(\omega_+-z)(\omega_--z)}}\\ &={\frac 1{(\omega_--z)}}-{\frac 1{(\omega_+-z)}}\\ &={\frac {\frac 1{w_-}}{(1-{\frac z{\omega_-}})}}-{\frac {\frac 1{w_+}}{(1-{\frac z{\omega_+}})}}\\ &={\frac 1{w_-}}\begin{pmatrix}1-{\frac z{\omega_-}}\end{pmatrix}^{-1}-{\frac 1{w_+}}\begin{pmatrix}1-{\frac z{\omega_+}}\end{pmatrix}^{-1}\end{align*}

Recall that (1-x)^{-1} has a power series representation:

(1-x)^{-1}=\sum_{n=0}^\infty x^n

Therefore, the above shows

\begin{align*}(w_+-w_-)f_t(z)&={\frac 1{w_-}}\begin{pmatrix}1-{\frac z{\omega_-}}\end{pmatrix}^{-1}-{\frac 1{w_+}}\begin{pmatrix}1-{\frac z{\omega_+}}\end{pmatrix}^{-1}\\ &={\frac 1{w_-}}\sum_{n=0}^\infty \begin{pmatrix}{\frac z{\omega_-}}\end{pmatrix}^n-{\frac 1{w_+}}\sum_{n=0}^\infty\begin{pmatrix}{\frac z{\omega_+}}\end{pmatrix}^n\\ &=\sum_{n=0}^\infty w_-^{-n-1}z^n-\sum_{n=0}^\infty w_+^{-n-1}z^n\\ &=\sum_{n=0}^\infty (w_-^{-n-1}-w_+^{-n-1})z^n\\ \Rightarrow\hspace{2cm}f_t(z)&=\sum_{n=0}^\infty (w_-^{-n-1}-w_+^{-n-1})(w_+-w_-)^{-1}z^n\end{align*}

Thus, letting

\begin{align*}U_n(t)&=(w_-^{-n-1}-w_+^{-n-1})(w_+-w_-)^{-1}\\ &=\begin{pmatrix}(t-\sqrt{t^2-1})^{-n-1}-(t+\sqrt{t^2-1})^{-n-1}\end{pmatrix}\begin{pmatrix}(t+\sqrt{t^2-1})-(t-\sqrt{t^2-1})\end{pmatrix}^{-1}\\ &=\begin{pmatrix}(t-\sqrt{t^2-1})^{-n-1}-(t+\sqrt{t^2-1})^{-n-1}\end{pmatrix}\begin{pmatrix}2\sqrt{t^2-1}\end{pmatrix}^{-1}\end{align*}

we obtain the power series representation

\begin{align*}f_t(z)&=\sum_{n=0}^\infty U_n(t)z^n\end{align*}

b) Since

\begin{align*}U_n(t)&=\begin{pmatrix}(t-\sqrt{t^2-1})^{-n-1}-(t+\sqrt{t^2-1})^{-n-1}\end{pmatrix}\begin{pmatrix}2\sqrt{t^2-1}\end{pmatrix}^{-1}\end{align*}

we get

\begin{align*}U_0(t)&=\begin{pmatrix}(t-\sqrt{t^2-1})^{-1}-(t+\sqrt{t^2-1})^{-1}\end{pmatrix}\begin{pmatrix}2\sqrt{t^2-1}\end{pmatrix}^{-1}\\ &={\frac 1{2\sqrt{t^2-1}(t-\sqrt{t^2-1})}}-{\frac 1{2\sqrt{t^2-1}(t+\sqrt{t^2-1})}}\\ &={\frac 1{t^2-(t^2-1)}}\\ &=1\\ U_1(t)&=\begin{pmatrix}(t-\sqrt{t^2-1})^{-2}-(t+\sqrt{t^2-1})^{-2}\end{pmatrix}\begin{pmatrix}2\sqrt{t^2-1}\end{pmatrix}^{-1}\\ &={\frac 1{2\sqrt{t^2-1}(2t^2-1-2\sqrt{t^4-t^2})}}-{\frac 1{2\sqrt{t^2-1}(2t^2-1+2\sqrt{t^4-t^2})}}\\ &=2t\\ U_3(t)&=\begin{pmatrix}(t-\sqrt{t^2-1})^{-3}-(t+\sqrt{t^2-1})^{-3}\end{pmatrix}\begin{pmatrix}2\sqrt{t^2-1}\end{pmatrix}^{-1}\\ &=\begin{pmatrix}(t-\sqrt{t^2-1})^{-2}+1+(t+\sqrt{t^2-1})^{-2}\end{pmatrix}\\ &=4t^2-1\end{align*}

c) In part a) above we have found the power series by looking at power series of

\begin{align*}\begin{pmatrix}1-{\frac z{\omega_-}}\end{pmatrix}^{-1}, \begin{pmatrix}1-{\frac z{\omega_+}}\end{pmatrix}^{-1}\end{align*}

These power series converge if and only if \begin{align*}|z|<|w_-|\end{align*} , respectively, \begin{align*}|z|<|w_+|\end{align*} . Therefore, the power series for f_t(z) converges if and only if |z|<\min\{|w_-|,|w_+|\} . Thus, the radius of convergence is

\min\{|w_-|,|w_+|\}=\min\{|t-\sqrt{t^2-1}|,|t+\sqrt{t^2-1}|\}

Add a comment
Know the answer?
Add Answer to:
c. Evaluate ,f(z) dz with า the circle of radius 1 centered at the origin and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT