Question

Cansider the series


Cansider the series \(\sum_{n=1}^{\infty} a_{n}\) where

$$ a_{n}=\frac{\left(6 n^{2}+2\right)(-7)^{n}}{5^{n+1}} $$

In this problem you must attempt to use the Ratio Test to decide whether the series converges.

Compute

$$ L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| $$

Enter the numerical value of the limit \(L\) if it converges, INF if it diverges to infinity, -INF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity.

L= _______

Which of the following statements is true?

A. The Ratio Test says that the series converges absolutely.

B. The Ratio Test says that the series diverges.

C. The Ratio Test says that the series converges conditionally.

D. The Ratio Test is inconclusive, but the series converges absolutely by another test or tests.

E. The Ratio Test is inconclusive, but the series diverges by another test or tests.

F. The Ratio Test is inconclusive, but the series converges conditionally by another test or tests.

Enter the letter for your choice here: _______ 



3 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Cansider the series
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the series

    Consider the series \(\sum_{n=1} a_{n}\) whereIn this problem you must attempt to use the Ratio Test to decide whether the series converges.Compute$$ L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| $$Enter the numerical value of the limit \(L\) if it converges, INF if it diverges to infinity, -INF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity.L= _______Which of the following statements is true?A. The Ratio Test says that the series converges absolutely.B. The Ratio...

  • Consider the series

    Consider the series \(\sum_{n=1} a_{n}\) whereIn this problem you must attempt to use the Ratio Test to decide whether the series converges.Compute$$ L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| $$Enter the numerical value of the limit \(L\) if it converges, INF if it diverges to infinity, -INF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity.L= _______Which of the following statements is true?A. The Ratio Test says that the series converges absolutely.B. The Ratio...

  • Consider the series

     Consider the series \(\sum_{n=1} a_{n}\) whereIn this problem you must attempt to use the Ratio Test to decide whether the series converges.Compute$$ L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| $$Enter the numerical value of the limit \(L\) if it converges, INF if it diverges to infinity, -INF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity.L= _______Which of the following statements is true?A. The Ratio Test says that the series converges absolutely.B. The Ratio...

  • Consider the series

    Consider the series \(\sum_{n=1} a_{n}\) whereIn this problem you must attempt to use the Ratio Test to decide whether the series converges.Compute$$ L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| $$Enter the numerical value of the limit \(L\) if it converges, INF if it diverges to infinity, -INF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity.L= _______Which of the following statements is true?A. The Ratio Test says that the series converges absolutely.B. The Ratio...

  • Consider the series

    Consider the series \(\sum_{n=1} a_{n}\) where$$ a_{n}=\frac{(-1)^{n} n^{2}}{n^{2}+4 n+3} $$In this problem you must attempt to use the Ratio Test to decide whether the series converges.Compute$$ L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| $$Enter the numerical value of the limit \(L\) if it converges, INF if it diverges to infinity, -INF if it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity.L= _______Which of the following statements is true?A. The Ratio Test says that the series...

  • Consider the series image.png where

    Consider the series  where  In this problem you must attempt to use the Ratio Test to decide whether the series converges Compute.Enter the numerical value of the limit L if it converges, INF if it diverges to infinity, MINF it it diverges to negative infinity, or DIV if it diverges but not to infinity or negative infinity. Which of the following statements is true? The Ratio Test says that the series converges absolutely. The Ratio Test says that the series diverges. The Ratio Test says that...

  • (1 point) Consider the series 14" (n+1)102141 In this problem you must attempt to use the...

    (1 point) Consider the series 14" (n+1)102141 In this problem you must attempt to use the Ratio Test to decide whether the series converges. Compute L = lim d. 1 a Enter the numerical value of the limit Lif it converges, INF if it diverges to infinity, -INF if it diverges to negative infinity, or DIV if it diverges but not to Infinity or negative infinity Which of the following statements is true? A. The Ratio Test says that the...

  • If the series

    If the series \(\sum_{n=1}^{\infty} a_{n}\) converges and \(a_{n}>0\) for all \(n\), which of the following must be true?(A) \(\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0\)(B) \(\left|a_{n}\right|<1\)for all \(n\)(C) \(\sum_{n=1}^{\infty} a_{n}=0\)(D) \(\sum_{n=1}^{\infty} n a_{n}\) diverges.(E) \(\sum_{n=1}^{\infty} \frac{a_{n}}{n}\) converges.

  • Determine whether the series converges or diverges.

    1. Determine whether the series converges or diverges.$$ \sum_{k=1}^{\infty} \frac{\ln (k)}{k} $$convergesdiverges2.Test the series for convergence or divergence.$$ \sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{3 \pi}{n}\right) $$convergesdiverges

  • Determine whether the given series converges or diverges

    Determine whether the given series converges or diverges. Fully justify your answe(a) \(\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n}\)(b) \(\sum_{n=1}^{\infty} \cos \left(\frac{1}{n^{2}}\right)\)(c) \(\sum_{n=1}^{x} \frac{(2 n) !}{5^{n} n ! n t}\)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT