Question

(1 point) Note: In this problem, use the method from class. See the lecture notes for January 12 on Brightspace. Also see Example 8.54 in the textbook. More examples (using real matrices) are in Section 8.6 of the textbook. Consider the sequence defined recursively by n+2 We can use matrix diagonalization to find an explicit formula for F (a) Find a matrix A that satisfies n+1 n+2 (b) Find the appropriate exponent k such that Fh Fi (c) Find a diagonal matrix D and an invertible matrix P such that A-PDP-
media%2F84c%2F84c2b79b-f672-40b1-9ef1-f5
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given, F0 = 0, F1 = 3, Fn+2 = 2Fn+1-2Fn

a) Now, Fn+1 Fn+2 = \begin{bmatrix} 0*F_{n}+1*F_{n+1}\\ -2*F_{n}+2*F_{n+1} \end{bmatrix}

i.e., \begin{bmatrix} F_{n+1}\\ F_{n+2} \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -2 & 2 \end{bmatrix} \begin{bmatrix} F_n\\ F_{n+1} \end{bmatrix}

Therefore, A = \begin{bmatrix} 0 & 1\\ -2 & 2 \end{bmatrix} .

b) Here, \begin{bmatrix} F_1\\ F_2 \end{bmatrix} = A\begin{bmatrix} F_0\\ F_1 \end{bmatrix}

And, \begin{bmatrix} F_2\\ F_3 \end{bmatrix} = A\begin{bmatrix} F_1\\ F_2 \end{bmatrix} = A*A\begin{bmatrix} F_0\\ F_1 \end{bmatrix} ,i.e., \begin{bmatrix} F_2\\ F_3 \end{bmatrix} = A2\begin{bmatrix} F_0\\ F_1 \end{bmatrix}

And, \begin{bmatrix} F_3\\ F_4 \end{bmatrix} = A\begin{bmatrix} F_2\\ F_3 \end{bmatrix} = A*A2\begin{bmatrix} F_0\\ F_1 \end{bmatrix} ,i.e., \begin{bmatrix} F_3\\ F_4 \end{bmatrix} = A3\begin{bmatrix} F_0\\ F_1 \end{bmatrix}

Proceeding in this way we get, \begin{bmatrix} F_n\\ F_{n+1} \end{bmatrix} = An\begin{bmatrix} F_0\\ F_1 \end{bmatrix}

Therefore, k = n.

c) Now, the characteristic equation of A is, \begin{vmatrix} 0-x & 1\\ -2 & 2-x \end{vmatrix} = 0

i.e., (-x)*(2-x)-1*(-2) = 0

i.e., x2-2x+2 = 0

i.e., x = 1+i, 1-i

Therefore, the eigenvalues of A are 1+i and 1-i.

Now, the eigenvectors corresponding to the eigenvalue 1+i are c\begin{bmatrix} 1\\ 1+i \end{bmatrix} , where c is nonzero real.

And, the eigenvectors corresponding to the eigenvalue 1-i are c\begin{bmatrix} 1\\ 1-i \end{bmatrix} , where c is nonzero real.

Let, P = \begin{bmatrix} 1 & 1\\ 1+i & 1-i \end{bmatrix} . Then P is non-singular matrix.

Now, AP = \begin{bmatrix} 0 & 1\\ -2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1\\ 1+i & 1-i \end{bmatrix} = \begin{bmatrix} 1+i & 1-i\\ 2i & -2i \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 1+i & 1-i \end{bmatrix} \begin{bmatrix} 1+i & 0\\ 0 & 1-i \end{bmatrix}

i.e., AP = PD

i.e., D = P-1AP

Therefore, D = \begin{bmatrix} 1+i & 0\\ 0 & 1-i \end{bmatrix} and P = \begin{bmatrix} 1 & 1\\ 1+i & 1-i \end{bmatrix} .

d) Here, P = \begin{bmatrix} 1 & 1\\ 1+i & 1-i \end{bmatrix} .

Now, adj(P) = \begin{bmatrix} 1-i & -1\\ -1-i & 1 \end{bmatrix} and det(P) = -2i.

Then, P-1 = adj(P)/det(P) = -(1/2i)\begin{bmatrix} 1-i & -1\\ -1-i & 1 \end{bmatrix}

i.e., P-1 = \begin{bmatrix} (1+i)/2 & -i/2\\ (1-i)/2 & i/2 \end{bmatrix}

Therefore, P-1 = \begin{bmatrix} (1+i)/2 & -i/2\\ (1-i)/2 & i/2 \end{bmatrix} .

e) A5 = PD5P-1 = \begin{bmatrix} 1 & 1\\ 1+i & 1-i \end{bmatrix} \begin{bmatrix} 1+i & 0\\ 0 & 1-i \end{bmatrix}^5\begin{bmatrix} (1+i)/2 & -i/2\\ (1-i)/2 & i/2 \end{bmatrix}

i.e., A5 = \begin{bmatrix} 1 & 1\\ 1+i & 1-i \end{bmatrix} \begin{bmatrix} (1+i)^5 & 0\\ 0 & (1-i)^5 \end{bmatrix}\begin{bmatrix} (1+i)/2 & -i/2\\ (1-i)/2 & i/2 \end{bmatrix}

i.e., A5 = \begin{bmatrix} 1 & 1\\ 1+i & 1-i \end{bmatrix} \begin{bmatrix} (1+i)^6/2 & -i(1+i)^5/2\\ (1-i)^6/2 & i(1-i)^5/2 \end{bmatrix}

i.e., A5 = \begin{bmatrix} [(1+i)^6+(1-i)^6]/2 & i[(1-i)^5-(1+i)^5]/2\\ [(1+i)^7+(1-i)^7]/2 & i[(1-i)^6-(1+i)^6]/2 \end{bmatrix}

Therefore, A5 = \begin{bmatrix} [(1+i)^6+(1-i)^6]/2 & i[(1-i)^5-(1+i)^5]/2\\ [(1+i)^7+(1-i)^7]/2 & i[(1-i)^6-(1+i)^6]/2 \end{bmatrix} .

f) We know that \begin{bmatrix} F_n\\ F_{n+1} \end{bmatrix} = An\begin{bmatrix} F_0\\ F_1 \end{bmatrix}

Putting n = 5 we get, \begin{bmatrix} F_5\\ F_{6} \end{bmatrix} = A5\begin{bmatrix} F_0\\ F_1 \end{bmatrix}

i.e., \begin{bmatrix} F_5\\ F_{6} \end{bmatrix} = \begin{bmatrix} [(1+i)^6+(1-i)^6]/2 & i[(1-i)^5-(1+i)^5]/2\\ [(1+i)^7+(1-i)^7]/2 & i[(1-i)^6-(1+i)^6]/2 \end{bmatrix} \begin{bmatrix} 0\\ 3 \end{bmatrix}

i.e., \begin{bmatrix} F_5\\ F_{6} \end{bmatrix} = \begin{bmatrix} 3i[(1-i)^5-(1+i)^5]/2\\ 3i[(1-i)^6-(1+i)^6]/2 \end{bmatrix}

Therefore, F5 = 3i[(1-i)5-(1+i)5]/2

g) From previous part we get, F5 = 3i[(1-i)5-(1+i)5]/2

Replacing 5 by n we get, Fn = 3i[(1-i)n-(1+i)n]/2.

Therefore, Fn = 3i[(1-i)n-(1+i)n]/2.

Add a comment
Know the answer?
Add Answer to:
(1 point) Note: In this problem, use the method from class. See the lecture notes for...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT