Question

In an aircraft cooling system, air enters the compressor at 1 bar and 4°C and is compressed to 3 bar with an isentropic effic

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Guion-Refrigeration cycle 22 T 3ban. 1-2--I sentropie Compression ladb> Azbucal compresion. 2-3-> isobaric heat rejection 3-4Gave detailed LILY Ta 277 ( 3 ) lit. T2=277 (3) 09 14 31784-10) Te 0:4 Tз T4 (3) (2369/an 273755 - Ти T4 = 229.66K 0-723 372

Add a comment
Know the answer?
Add Answer to:
In an aircraft cooling system, air enters the compressor at 1 bar and 4°C and is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. Consider a dual-loop cycle utilizing air as the working fluid is shown schematically in the fi...

    3. Consider a dual-loop cycle utilizing air as the working fluid is shown schematically in the figure below. Air enters the compressor at 1 bar and 4°C and is compressed to 3 bar. Part of the air exiting the compressor enters the refrigeration cycle and remaining enters the power cycle. The air supplied to the refrigeration cycle from the compressor is cooled to the 55°C at constant pressure in a heat exchanger and then expands in a turbine to 1...

  • An air refrigeration plant of 70.26 kW, capacity comprises a centrifugal compressor, a cooler hea...

    An air refrigeration plant of 70.26 kW, capacity comprises a centrifugal compressor, a cooler heat exchanger and an air turbine. The compressor is coupled directly to the air turbine. The compressor also receives power from another prime mover. The processes in the compressor and the turbine are adiabatic but not isentropic. Air at temperature 294 K and 85 kPa enters the compressor. It leaves the compressor at 363 K. the same air enters the turbine at 311 K and 150...

  • The refrigerant gas which is air, enters the compressor of a Brayton refrigeration cycle at 101...

    The refrigerant gas which is air, enters the compressor of a Brayton refrigeration cycle at 101 kPa, 280 K. If the compressor pressure ratio is 5 and the turbine inlet temperature is 330 K. The compressor has an isentropic efficiency of 70% and the turbine has an isentropic efficiency of 80%. Using air table rather than constant-specific-heat theory, determine (a) the net work input per unit mass of air flow, (b) the refrigeration capacity, in kJ/kg, (c) the coefficient of...

  • A combined gas turbine-vapor power plant has a net power output of 100 MW. Air enters...

    A combined gas turbine-vapor power plant has a net power output of 100 MW. Air enters the compressor of the gas turbine at 100kPa, 300K, and is compressed to 1200kPa. The isentropic efficiency of the compressor is 84%. The conditions at the inlet to the turbine are 1200kPa and 1400 K. Air expands through the turbine, which has an isentropic efficiency of 88%, to a pressure of 100kPa. The air then passes through the interconnecting heat exchanger, and is finally...

  • Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60...

    Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 17.5, and the maximum cycle temperature is 2100 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. Determine: (a) the net power developed, in kW. (b) the rate of heat addition in the combustor, in kW. (c) the percent thermal efficiency of the cycle.

  • (i) In a gas turbine plant, air enters the compressor at 150 C and it is...

    (i) In a gas turbine plant, air enters the compressor at 150 C and it is compressed through a pressure ratio of 4 with isentropic efficiency of 85%. The air-fuel ratio is 80 and the calofific value of fuel is 42000kJ/kg. The turbine inlet air temperature is 1000 K and the isentropic efficiency of the turbine is 82%. Calculate the overall efficiency and air intake for à power output of 260 kW. Take the mass of fuel inG account. PSG...

  • Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of...

    Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of 100 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 20, and the maximum cycle temperature is 2100 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. For a regenerator effectiveness of 86%, determine: (a) the net power developed, in MW. (b) the rate of heat addition in the combustor, in MW. (c)...

  • Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of...

    Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of 20 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 20, and the maximum cycle temperature is 1950 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. For a regenerator effectiveness of 86%, determine: (a) the net power developed, in MW. (b) the rate of heat addition in the combustor, in MW. (c)...

  • Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.14 MPa and -10°C at a rate of 0.124...

    Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.14 MPa and -10°C at a rate of 0.124 kg/s, and it leaves at 0.7 MPa and 50°C. The refrigerant is cooled in the condenser to 24°C and 0.65 MPa, and it is throttled to 0.15 MPa. Disregarding any heat transfer and pressure drops in the connecting lines between the components, determine (a) the rate of heat removal from the refrigerated space and the power input to the compressor...

  • 1. Refrigerant 134a enters the compressor of a refrigerator as superheated vapor at 0.20 MPa and...

    1. Refrigerant 134a enters the compressor of a refrigerator as superheated vapor at 0.20 MPa and -10 °C at a rate of 0.07 kg/s, and it leaves at 1.2 MPa and 70 °C. The refrigerant is cooled in the condenser to 44 °C and 1.130 MPa and it is throttled to 0.20 MPa. Disregarding heat transfer and pressure drop in the connecting lines between the components, show the cycle on a T-s diagram with respect to the saturation line. Determine...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT