Question

Consider an insulating sphere with radius a = 9 cm. A charge of -13.3 μC is...

Consider an insulating sphere with radius a = 9 cm. A charge of -13.3 μC is uniformly distributed throughout this sphere. It is surrounded by a conducting shell. The charge on the inner surface of the shell is q2 and the charge on the outer surface of the shell is q3. The total charge q on the shell is 66.3 μC. Find the charges q2 and q3.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Here,   q2 = 13.3 + q

            q3 =   - 13.3 + q

=>    2q = 66.3

=>   q = 33.15 μC

=> q2 = 13.3 + 33.15 = 46.45 μC

=> q3 =   - 13.3 + 33.15   = 19.85 μC

Add a comment
Know the answer?
Add Answer to:
Consider an insulating sphere with radius a = 9 cm. A charge of -13.3 μC is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a solid insulating sphere of radius a that carries a total charge of +3Q but...

    Consider a solid insulating sphere of radius a that carries a total charge of +3Q but is distributed in a non-uniform fashion given by ρ(r) = αr2 . It is surrounded by a hollow conducting shell of inner radius b and outer radius c. A charge of −4Q has been placed on the outer surface of the shell. (Note: This problem will be worth 10 points instead of 5 points.) a) Determine E~ at all points in space. b) Determine...

  • insulating sphere of radius a carries a positive charge 3Q, uniformly distributed its volume. Concentric with...

    insulating sphere of radius a carries a positive charge 3Q, uniformly distributed its volume. Concentric with this sphere a conducting spherical shell with inner radius b and outer radius c, and having a net charge -Q as shown in Figure. Find the charge distribution on the shell (charge on the inner radius b and charge on the outer radius c) when entire system is in electrostatic equilibrium.

  • A solid insulating sphere of radius 5.00 cm is centered at the origin. It carries a total charge of 2.00 C uniformly distributed through its volume

    A solid insulating sphere of radius 5.00 cm is centered at the origin. It carries a total charge of 2.00 C uniformly distributed through its volume. Concentric with this sphere is an uncharged conducting shell whose inner and outer radii are 8.00 cm and 10.0 cm respectively.  a What is the electric field (magnitude and direction) 1.00 cm from the origin  b How much charge resides on the inner surface of the conductor c What is the electric field (magnitude and...

  • A solid insulating sphere of radius a = 3.1 cm is fixed at the origin of...

    A solid insulating sphere of radius a = 3.1 cm is fixed at the origin of a co-ordinate system as shown. The sphere is uniformly charged with a charge density ρ = -350 μC/m3. Concentric with the sphere is an uncharged spherical conducting shell of inner radius b = 13.5 cm, and outer radius c = 15.5 cm. 1) What is Ex(P), the x-component of the electric field at point P, located a distance d = 30 cm from the...

  • In the figure below, a solid sphere, of radius a = 1.70 cm is concentric with...

    In the figure below, a solid sphere, of radius a = 1.70 cm is concentric with a spherical conducting shell of inner radius b 2.00a and outer radius c = 2.40a. The sphere has a net charge q1 = +6.00 fc which is distributed uniformly through the sphere, the shell has a net charge of q2-q1 (g) What is the net charge on the inner surface of the shell? fc (h) What is the net charge on the outer surface...

  • A solid conducting sphere of radius 2.00 cm has a charge of 8.30 μC.

     A solid conducting sphere of radius 2.00 cm has a charge of 8.30 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a charge of -3.00 μC. Find the electric field at the following radii from the center of this charge configuration. (a) r= 1.00 cm (b) r = 3.00 cm (c) r = 4.50 cm(d) r = 7.00 cm

  • ​A hollow insulating spherical shell of inner radius R0 and outer radius R1 is positively charged with a charge density of p(r) = p0(1 – (r/R1)3).

    A hollow insulating spherical shell of inner radius R0 and outer radius R1 is positively charged with a charge density of p(r) = p0(1 – (r/R1)3). A positive charge +Q is placed in the center of the hollow sphere and a concentric grounded conducting shell with inner radius R2 and outer radius R3 surrounds the hollow sphere. (The conducting shell was neutral before it is grounded.) (a) What is the total charge on the insulating sphere? (b) What charges are on the...

  • A solid conducting sphere of radius 2 cm has a charge of 8 mu C. A...

    A solid conducting sphere of radius 2 cm has a charge of 8 μC. A conducting spherical shell of inner radius 4 cm and outer radius 5 cm is concentric with the solid sphere and has a charge of -4 μC Find:  a) The electric field at r = 1 cm from the center of this charge configuration.  b) The electric field at r = 3 cm from the center of this charge configuration  c) The electric field at r =...

  • Charge Q = +4.00 μC is distributed uniformly over the volume of an insulating sphere that...

    Charge Q = +4.00 μC is distributed uniformly over the volume of an insulating sphere that has radius R = 5.00 cm. What is the potential difference between the center of the sphere, V(0) and the surface of the sphere, V(R)? Solve by finding the E-field inside the insulating sphere using Gauss law, and then find the potential difference.

  • A solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge of Q.

    A solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge of Q. Concentric with this sphere is an uncharged, conducting hollow sphere whose inner and outer radii are b and c as shown in the figure below. We wish to understand completely the charges and electric fields at all locations. (Assume Q is positive. Use the following as necessary: Q, ε0 , a, b, c and r. Do not substitute numerical...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT